How to Apply Tungsten Disulfide Coating

A Comprehensive Guide to the Application Process and Best Practices

Prepared by: LowerFriction Engineering Team

Date: November 2024

https://lowerfriction.com/

Table of Contents

- 1. Introduction to Tungsten Disulfide Coating
- 2. Properties of Tungsten Disulfide Coating
- 3. Surface Preparation for Application
- 4. Application Methods
- 5. Curing and Final Touches
- 6. Advantages of Tungsten Disulfide Coating
- 7. Safety Measures and Handling Guidelines
- 8. Common Applications

1. Introduction to Tungsten Disulfide Coating

• What is Tungsten Disulfide Coating?

 Tungsten Disulfide (WS₂) is a solid lubricant known for its low friction, high temperature stability, and wear resistance. Its application enhances the performance and longevity of mechanical components.

• Why Use WS₂ Coating?

 It reduces friction, minimizes wear, and withstands high temperatures, making it ideal for high-performance industrial and engineering applications.

2. Properties of Tungsten Disulfide Coating

• Low Coefficient of Friction:

 One of the lowest among solid lubricants, at approximately 0.03.

• Thermal Stability:

 Performs at temperatures up to 650°C in normal air and higher in inert environments.

• Chemical Inertness:

 Resistant to most chemicals, maintaining performance in corrosive environments.

• Thickness:

Provides an ultra-thin layer (~0.5 microns),
ensuring minimal dimensional changes to parts.

3. Surface Preparation for Application

• Cleaning:

 Remove grease, dirt, and contaminants with solvents or ultrasonic cleaners.

• Surface Roughening:

 Use abrasive blasting or sanding to create a slightly rough surface for better adhesion.

• Drying:

 Ensure the surface is completely dry before starting the application process.

4. Application Methods

• Spray Application:

○ WS₂ powder mixed with a liquid carrier is sprayed

onto the prepared surface using a precision spray gun.

• Burnishing:

 Rub the powder directly onto the surface under pressure to embed the particles.

• Dipping:

 Submerge parts into a WS₂ solution for even coverage.

• Vacuum Deposition:

 Apply WS₂ in a controlled vacuum chamber for a highly uniform and durable coating.

5. Curing and Final Touches

• Curing:

 Heat the coated parts at 150°C to 400°C to enhance adhesion and durability.

• Polishing:

 Buff the surface to remove excess particles and achieve a smooth finish.

6. Advantages of Tungsten Disulfide Coating

• Wear Resistance:

 Protects surfaces from abrasion and mechanical wear.

• Temperature Tolerance:

• Retains properties under extreme temperatures.

• Long-Lasting Performance:

 Requires minimal reapplication compared to liquid lubricants.

7. Safety Measures and Handling Guidelines

• Protective Equipment:

 Use masks and gloves to avoid inhalation or contact with WS₂ powder.

• Storage:

Keep WS₂ powder in a sealed container in a dry,
cool environment.

• Ventilation:

 Apply in well-ventilated areas to avoid inhaling fine particles.

8. Common Applications

• Automotive Industry:

 Coatings for engine components, pistons, and bearings.

• Aerospace and Defense:

 Used on turbines, gears, and other high-performance mechanisms.

• Industrial Equipment:

 Protects tools, rollers, and mechanical parts from wear.