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A Appendix B: Section 5 Proofs

Proof for Theorem 5.

Proof. We begin by introducing a set of necessary and sufficient conditions for
an N-NS partition to exist for any symmetric FOHGS, briefly observe that the
conditions can be checked in polynomial time, then prove that the conditions
are necessary and sufficient.

The following conditions are necessary and sufficient for an N-NS partition
to exist for any symmetric FOHGS. For all i ∈ N , one of the following must
hold:

– Fi 6= ∅
– Ei = N \ {i}

For any agent i ∈ N , |Fi ∪Ei ∪Si| = |N | − 1, meaning that these conditions can
be checked in at worst O(|N |2) time for any FOHGS instance. We now prove
that these conditions are both necessary and sufficient in order for an N-NS
partition to exist for any FOHGS instance.

First, we observe that, for any agent i ∈ N such that |Fi| > 0, i will have
strictly positive utility in any coalition C where |C ∩ Fi| > 0, meaning that any
partition containing any such coalition is individually rational for i. If @i ∈ N :
Fi = ∅, then the grand coalition will be individually rational for all i ∈ N and
thus will be N-NS as well since the only way for an individual agent to deviate
from the grand coalition is to become a singleton. Now suppose that there exists
at least one agent i ∈ N : Fi = ∅. Since i has no known friends, the only N-IR
coalition for i is to be a singleton since any other coalition provides the possibility
of negative utility, so any N-NS partition must have i as a singleton. If Si is also
empty, then there are no problems, as all other agents must be known enemies of
i, so they have no possible motivation to join any coalition. On the other hand, if
Si is non-empty, then i will have possible motivation to join any coalition where
a stranger exists. Thus, if Fi = ∅, but Si 6= ∅ for any i ∈ N , then an N-NS
partition cannot exist. If, instead, for all i ∈ N either Fi 6= ∅ or Ei = N \ {i},
then the partition γ = {{i ∈ N : Fi 6= ∅}},

⋃
j∈N :Fj=∅{{j}} is N-NS.

Thus, we conclude that N-NS existence can be checked for symmetric FOHGS
in polynomial time.

Proof for Theorem 6.
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Proof. We construct reductions from Exact Cover by 3 Sets (EC3) similar to
those used by Brandt, Bullinger, and Tappe (2022) in their proofs that NS
existence is NP-complete for FOHG and EOHG. First, we observe that the
reductions used by Brandt, Bullinger, and Tappe (2022) in the proofs showing
the hardness of NS existence can’t be used as-is. Thus, we modify the reductions
used by Brandt, Bullinger, and Tappe (2022) to prove the hardness of N-IS
existence in FOHGS and EOHGS.

N-IS existence for asymmetric FOHGS. Given an EC3 instance (R,S),
we produce a FOHGS (N,F,E, S) such that (R,S) has an exact cover if and only
if (N,F,E, S) has an N-IS partition. For each r ∈ R, let Sr = {s ∈ S : r ∈ s}
and nr = |Sr|. The agent set N will be defined by N = {d} ∪

⋃
s∈S A

s ∪⋃
r∈R({cr1, cr2},∪{bri : i ∈ [nr − 1]}) where As = {asr : r ∈ s} for each s ∈ S.

Agent relations are defined as follows:

– For each s ∈ S, a 6= a′ ∈ As: a′ ∈ Fa

– For each r ∈ R, s ∈ Sr, i ∈ [nr − 1]: bri ∈ Fas
r
asr, d ∈ Fbri

cr1 ∈ Sbri
bri ∈ Sd

– For each r ∈ R: cr2 ∈ Fcr1
cr1, d ∈ Fcr2

cr2 ∈ Sd

– For each r ∈ R, s ∈ Sr, r′ 6= r ∈ s: cr1 ∈ Fas
r
cr
′

1 ∈ Sas
r
asr ∈ Fcr1

– For each r ∈ R, s ∈ Sr, i ∈ [nr − 1], r′ 6= r ∈ s: ar′s ∈ Sbri
– All relations not otherwise defined are enemy relations

Since the number of agents is polynomial in the size of (R,S), this reduction
can be computed in polynomial time. Next, we show that if ∃S′ ⊆ S such that
S′ is an exact cover of R, then an N-IS partition exists for (N,F,E, S).

Suppose there exists some S′ ⊆ S that is an exact cover ofR, we can construct
an N-IS partition γ for (N,F,E, S). For each s ∈ S′ let As form a single coalition
in γ. Supposing that S′ is an exact cover, for each r ∈ R, it must hold that
nr−1 = |Sr \S′|. For each r ∈ R, i ∈ [nr−1], let si denote an arbitrary member
s ∈ Sr \ S′ and let {bri , arsi} ∈ γ. For each r ∈ R let {cr1, cr2} ∈ γ. Let {d} be a
singleton in γ.

Since d has no known friends, they lack necessary motivation to join any
coalition. For each r ∈ R, i ∈ [nr − 1], d views bri and cr2 as strangers, meaning
that d has possible motivation to join any coalition containing one or more bri
or cr2 agents. For each r ∈ R, i ∈ [nr − 1], s ∈ Sr \ S′, arsi views d as a known
enemy, so d cannot get possible permission to join the coalition {arsi , b

r
i }. For

each r ∈ R, cr1 views d as a known enemy, so d cannot get possible permission
to join the coalition {cr1, cr2}. Thus, d cannot get possible permission to join any
of the coalitions it has possible motivation to join.

For each r ∈ R, cr1 and cr2 are in a coalition with one known friend and no
enemies. cr2 is possibly indifferent between their current coalition and leaving to
join d so they lack any possible motivation to leave cr1 to join d. For each s ∈ Sr

cr1 has at most one known friend and at least one known enemy in each coalition
containing asr ∈ As, so they lack possible motivation to join any coalition con-
taining at most one asr agent. Thus, cr1 and cr2 lack possible motivation to join
any other coalition.

For each r ∈ R, i ∈ [nr − 1], bri is in a coalition with one known friend
and no enemies, so they are possibly indifferent between their current coalition
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and leaving to join d, so they lack possible motivation to deviate to join d. For
each s 6= si ∈ Sr, ars is in a coalition with at least one agent who is a known
mutual enemy of bri or who views bri as a known enemy, so bri lacks possible
permission, possible motivation, or both to join any such coalition. bri views cr1
as a stranger, but cr1 views bri as a known enemy, so bri cannot get permission to
join any coalition containing cr1. Thus bri lacks motivation, permission, or both
to join any other coalition.

For each r ∈ R, s ∈ S′, ars is in a coalition both agents a 6= ars ∈ As. No
two other friends of ars are in the same coalition, so ars lacks possible motivation
to move to any other coalition. For each r ∈ R, i ∈ [nr − 1], si ∈ Sr \ S′, arsi
is in a coalition with bri and no other agents. Since each a 6= arsi ∈ A

si is not
contained in any As : s ∈ S′, they are paired with some agent b who is a known
enemy of arsi , so a

r
si lacks possible motivation to join any coalition containing

some a 6= arsi ∈ A
s. cr1 is paired with cr2 who is a known mutual enemy of ars, so

ars lacks both possible motivation and possible permission to leave their current
coalition to join cr1. Thus, each agent in this partition lacks possible motivation
to deviate, possible permission to deviate to a coalition they want to join, or
both, meaning that the partition is N-IS. We conclude that if an exact cover
exists for (R,S), then an N-IS partition must exist for (N,F,E, S).

Next, we show that if there exists some N-IS partition γ for (N,F,E, S),
then there must exist some S′ ⊆ S such that S′ is an exact cover of R.

Because d has no known friends, they must be a singleton in any N-IS parti-
tion, as otherwise they have possible motivation to deviate to become a singleton.
For each r ∈ R, cr2 must be in a coalition with cr1 and no enemies, or they will
have possible motivation and possible permission to join d. For each r ∈ R,
s 6= s′ ∈ Sr, ars and ars′ must be in separate coalitions, or cr1 will have possible
motivation and possible permission to join the coalition, thereby leaving cr2 as
a singleton which could possibly join d. For each r ∈ R, i ∈ [nr − 1], bri must
be paired with at least one arsi or bri will have possible motivation and possible
permission to join d. For each r ∈ R, i ∈ [nr−1], bri will have possible motivation
and permission to deviate from any matching which places them in a coalition
with one or more agents brj , where j 6= i ∈ [nr−1] without also including at least
one additional agent arsj . We’ve established that no N-IS partition can place two
agents ars, ars′ where s 6= s′ in the same coalition for each r ∈ R. Thus, for each
r ∈ R, i ∈ [nr − 1], bri must be in a coalition with exactly one agent arsi .

For each As group, let ars, ar
′

s , and ar
′′

s refer to its three members. Either,
each member must be in a coalition with at least one b agent who is a known
friend, or As ∈ γ must hold. Suppose there existed some group As such that one
member ars is contained in a coalition {ars, b} where ars and b are known friends,
while ar

′

s and ar
′′

s are singletons. Both ar
′

s and ar
′′

s have necessary motivation
and permission to join each other to form a pair instead of singletons. Thus, no
partition containing {ars, b}, {ar

′

s }, and {ar
′′

s } for any As group can be N-IS. If
we suppose instead that {ars, b} ∈ γ and {ar′s , ar

′′

s } ∈ γ, then ars has necessary
motivation and permission to leave b to join {ar′s , ar

′′

s }, thereby leaving b as a
singleton and forming As. Thus, no partition containing {ars, b} and {ar′s , ar

′′

s }
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for any As group can be N-IS. We conclude that no N-IS partition exists where,
for some group As, ars is paired with some known friend b, while ar

′

s and ar
′′

s are
not. Suppose instead that two members of As, ars and ar

′

s were paired with known
friends b and b′ respectively, leaving ar

′′

s as a singleton. Since ar
′′

s is viewed as a
stranger by both b and b′, ar

′′

s has necessary motivation and possible permission
to join both {ars, b} and {ar

′

s , b
′}, so the partition cannot be N-IS. Further, neither

partition resulting from such deviations, γ′ 3 {ars, b, ar
′′

s } and γ′′ 3 {ar
′

s , b
′, ar

′′

s },
is N-IS because b (resp. b′) has possible motivation and permission to leave to
join d, and ar

′

s (resp. ars) has possible motivation and permission to leave {ar′s , b′}
(resp. {ars, b}) and join {ars, b, ar

′′

s } (resp. {ar
′

s , b
′, ar

′′

s }). We conclude that no N-IS
partition exists where, for some group As, two agents ars and ar

′

s are paired with
known friends b and b′, while the remaining agent ar

′′

s is not. Suppose now that
all three members of As are paired with a known friend b, b′, and b′′ respectively.
Supposing that for each r ∈ R, cr1 is paired with cr2, each a ∈ As has at most one
friend and at least one known enemy in every other coalition in the partition,
so they lack possible motivation to join any other coalition. Suppose now that
As ∈ γ. Supposing that for each r ∈ R and i ∈ [nr − 1], bri is paired with some
agent arsi such that si 6= s ∈ S, each a ∈ As has at most one known friend and at
least one known enemy in every other coalition, so they lack possible motivation
to join any other coalition. Thus, for each group As, either As ∈ γ must hold or
each agent a ∈ As must be paired with at least one known friend b.

For each r ∈ R, |{As : ars ∈ Ss}| = nr and |{bri : i ∈ [nr − 1]}| = nr − 1.
This means that at most nr − 1 of the nr agents ars can be paired with a known
friend bri , so for each r ∈ R there must exist some group As such that As ∈ γ
and ars ∈ As if an N-IS partition exists.

Combining the requirements that we’ve established thus far, we conclude that
any N-IS partition γ for (N,F,E, S) based upon some EC3 instance (R,S) must
be structured as follows. For each r ∈ R, {cr1, cr2} ∈ γ must hold and there must
exist exactly one coalition As ∈ γ such that asr ∈ As. For each r ∈ R, i ∈ [nr−1],
{bri , arsi} ∈ γ must hold for some si ∈ Sr. For each group As, either As ∈ γ must
hold, or each agent a ∈ As must be paired with exactly one known friend b so
that {a, b} ∈ γ holds. Agent d must be a singleton so {d} ∈ γ holds. These
structural requirements indicate that any N-IS partition (N,F,E, S) exhibits
the same structure as a partition that results from converting an exact cover
S′ ⊆ S of (R,S) into an N-IS partition for (N,F,E, S). Thus, we conclude that
if an N-IS partition exists for (N,F,E, S), then an exact cover must exist for
(R,S).

We conclude that an exact cover exists for (R,S) if and only if an N-IS
partition exists for (N,F,E, S). Therefore, N-IS existence for asymmetric
FOHGS is NP-complete.

N-IS existence for asymmetric EOHGS. Given an EC3 instance (R,S)
we produce an EOHGS instance (N,F,E, S) such that (R,S) has an exact cover
if and only if (N,F,E, S) has an N-IS partition. For each r ∈ R, let Sr =
{s ∈ S : r ∈ s} and nr = |Sr| The agent set N will be defined by N =
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{d} ∪
⋃

s∈S A
s ∪

⋃
r∈R({bri : i ∈ [nr − 1]}) where As = {as, asr1 , a

s
r2 , a

s
r3} for each

s = {r1, r2, r3} ∈ S. Agent relations are defined as follows:

– For each s ∈ S, a 6= a′ ∈ As: a′ ∈ Fa

– For each r ∈ R, s ∈ Sr, i ∈ [nr − 1]: bri ∈ Fas
r
asr, d ∈ Fbri

bri ∈ Sd

– All relations not otherwise defined are enemy relations

This reduction can be computed in polynomial time. We now show that if an
exact cover S′ ⊆ S of (R,S) exists, then an N-IS partition exists for (N,F,E, S).

Supposing there exists exact cover S′ ⊆ S of (R,S), we construct an N-IS
partition γ for (N,F,E, S). For each s ∈ S′, let As be a coalition in γ. Since S′
is an exact cover, it must hold that |Sr \ S′| = nr − 1, so for i ∈ [nr − 1] we
let si denote an arbitrarily chosen s ∈ Sr \ S′ and let {bri , a

}
si ∈ γ. Let {d} be a

singleton in γ, and for each s /∈ S′ let {as} be a singleton in γ.
First, we observe that d has no known friends, so they have no necessary

motivation to join any other coalition. The only strangers that d has are the b
agents, each of whom is paired with the a agent who is mutual enemies with
d. Thus, d lacks possible motivation and possible permission to join any other
coalition.

For each r ∈ R, i ∈ [nr−1], bri is in a coalition with exactly one known friend
and no other agents. While bri is possibly indifferent between their assigned
coalition and leaving to join d, they do not have possible motivation to deviate
and join d. For each s 6= si ∈ Sr, ars is in a coalition with at least one known
mutual enemy of bri , so bri has no possible motivation to join another coalition
with a known friend.

For each r ∈ R, s ∈ Sr, ars is either in a coalition with some known mutual
friend bri , for some i ∈ [nr − 1], or in a coalition with known mutual friends
as, a

r′

s , and ar
′′

s . If they are in a coalition with some bri , then they are indifferent
between their current assignment and leaving to join as, so they lack possible
motivation to join as; the other friends of ars are each paired with some known
mutual enemy of ars, b, so ars lacks possible motivation and possible permission
to leave bri to join any of the coalitions with their other friends. If ars is in the
coalition As, then all other coalitions have at most one known mutual friend
and have at least one mutual enemy, so ars has neither possible motivation nor
possible permission to join another coalition. Thus, the partition derived from
exact cover S′ is N-IS.

Next, we show that if an N-IS partition exists for (N,F,E, S), then an exact
cover exists for (R,S).

First, we observe that, because d has no known friends, they must be a
singleton in any N-IS partition, since otherwise, they have possible motivation
to leave and become a singleton.

For each s′ 6= s ∈ S, no N-IS partition can place a ∈ As in a coalition with any
agent a′ ∈ As′ , since a will have necessary motivation to become a singleton. For
each r ∈ R, i ∈ [nr−1, bri must be in a coalition with at least one agent arsi ∈ A

si

for some si ∈ Sr or bri will have possible motivation and possible permission to
join d. Since no two agents a, a′ from As 6= As′ respectively can be in the same
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coalition, bri must be in a coalition with exactly one agent arsi ∈ A
si for some

si ∈ Sr and no other agents. For each r ∈ R, s ∈ Sr, ars ∈ As, we’ve established
that Far

s
= {a 6= ars ∈ As ∪ bri∀i ∈ [nr − 1]}. Since (N,F,E, S) is an EOHGS,

no N-IS partition can place any ars in a coalition with any agent a ∈ N \ Far
s

since all other agents are known enemies, so any N-IS partition must place ars in
a clique with agents from this set. Since for all r ∈ R, i 6= j ∈ [nr − 1], bri and
brj are known mutual enemies, ars can be in a coalition with no more than one
b agent, as two or more b agents in a coalition will give both of them necessary
motivation to leave to become a singleton and possible motivation and possible
permission to join d.

First, we address the case when ars is not paired with a b agent, showing that
they must be in As unless they are paired with some agent b ∈ Far

s
. Suppose

this was not the case and some N-IS partition exists where ars is not paired with
any agent bri and is not in the coalition As. Based upon the known friends of
ars, the only other individually rational coalitions they could be a member of
include being a singleton or being in some coalition As∗ ⊂ As. Suppose ars were
a singleton. First, we observe that all agents in the set N \As are known enemies
of the agent as, so if the partition is truly N-IS, then as must be a singleton
or in some coalition As∗ ⊂ As. In either case, ars has necessary motivation and
permission to join whichever coalition as is a member of since ars is known mutual
friends with as and all known friends of as, so ars cannot be a singleton in any N-
IS partition. Suppose instead that ars is in some coalition As∗ ⊂ As. In this case,
|As∗ | ∈ {2, 3}, which will provide all agents ar

′

s ∈ As \As∗ necessary motivation
and permission to leave their current coalition to join As∗ since they will have
strictly more friends and no known enemies, ultimately resulting in As forming
over the course of one or two necessary deviations.

Now we address the case where ars is paired with some agent b ∈ Far
s
, showing

that if ars is paired with a b agent, then all ar
′

s must also be paired with b agents
and as must be a singleton. Suppose that ars is paired with some agent b ∈ Far

s
,

but no other agent a′ ∈ As is paired with a similar b agent. As previously
described, such a partition will necessarily result in the other members of As

forming a coalition together over the course of some number of deviations until ars
has more known friends and no known enemies in the resulting As∗ coalition than
they do in a pair with b, so they will have necessary motivation and permission
to leave their partner and join their other friends. In contrast, if all agents
a ∈ As \ {as} are paired with some agent b ∈ Fa, then each agent is indifferent
between their current coalition and leaving to join as, and as lacks possible
motivation and possible permission to join any of their friends, so they remain
as a singleton.

Combining the requirements that we’ve outlined, we find that any N-IS par-
tition γ must be structured as follows. Agent d must be a singleton {d} ∈ γ.
For each r ∈ R, i ∈ [nr − 1], bri must be paired with some agent arsi ∈ A

si for
some arbitrarily chosen si ∈ Sr so that {bri , arsi} ∈ γ For each r ∈ R, there must
exist exactly one s ∈ Sr such that As ∈ γ. These structural requirements result
in a partition that follows the same structure as the partitions that result from
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converting some exact cover S′ ⊆ S into an N-IS partition of (N,F,E, S). Thus,
we conclude that if an N-IS partition exists for (N,F,E, S), then an exact cover
must exist for (R,S).

We conclude that an exact cover exists for (R,S) if and only if an N-IS
partition exists for (N,F,E, S). Therefore, N-IS existence for asymmetric
EOHGS is NP-complete.

Proof for Theorem 7.

Proof. We begin by introducing a set of necessary and sufficient conditions for
an N-CIS partition to exist for any symmetric FOHGS, briefly observe that the
conditions can be checked in polynomial time, then prove that the conditions
are necessary and sufficient.

The following conditions are necessary and sufficient for an N-CIS partition
to exist for any symmetric FOHGS. For all i ∈ N one of the following must hold:

– Fi 6= ∅ OR
– ∀j ∈ Si, Fj 6= ∅ AND ∃k : Fk 6= ∅ ∧ i ∈ Ek

For any agent i ∈ N , |Fi ∪Ei ∪Si| = |N | − 1, meaning that these conditions can
be checked in at worst O(|N |3) time for any FOHGS instance. We now prove
that these conditions are both necessary and sufficient in order for an N-NS
partition to exist for any FOHGS instance.

First, we observe that, for any agent i ∈ N such that |Fi| > 0, i will have
strictly positive utility in any coalition C where |C ∩ Fi| > 0, meaning that any
partition containing any such coalition is individually rational for i. Further, by
placing all i ∈ N : Fi 6= ∅ in a coalition together, we ensure that none of these
agents can leave, since they lack possible permission from their friend(s). Agents
who have no known friends have possible motivation and permission to leave any
non-singleton coalition, so any N-CIS partition places all agents i ∈ N where
Fi = ∅ as singletons. If any two agents i 6= j ∈ N where Fi = ∅ = Fj are strangers
with each other, then they both have possible motivation and possible permission
to join the other to form a pair, meaning that the partition is not N-CIS; however,
since they have no known friends, they have possible motivation and possible
permission to leave any non-singleton coalition to become a singleton, so no N-
CIS partition can place them into the same coalition. Thus no N-CIS partition
can exist when two agents with empty sets of known friends are strangers with
each other. Given any two agents i 6= j ∈ N where Fi = ∅, Fj 6= ∅, and
j ∈ Si, i has possible motivation to join the coalition containing all agents
with known friends; however, this is not sufficient to preclude the existence
of an N-CIS partition. In order for some agent i : Fi = ∅ to have possible
motivation and possible permission to join the set of agents with known friends,
{j ∈ N : Fj 6= ∅} ⊆ Si must hold. Thus, even if i is strangers with some agent(s)
with known friends, so long as ∃j 6= i ∈ N : Fj 6= ∅ and i ∈ Ej , i cannot get
permission to join the coalition of agents with known friends. Thus if each agent
i ∈ N either has Fi 6= ∅ or ∀j ∈ Si, Fj 6= ∅ and ∃k : Fk 6= ∅ ∧ i ∈ Ek, then the
partition γ = {{i ∈ N : Fi 6= ∅}},

⋃
j∈N :Fj=∅{{j}} is N-CIS.
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The conditions that are necessary and sufficient for N-CIS existence in sym-
metric FOHGS are also necessary and sufficient for symmetric EOHGS and can
similarly be checked in at worst O(|N |3) time. Although the utility values for
friends and enemies are different, equivalent logic proves that the same condi-
tions guarantee the existence of an N-CIS partition for symmetric EOHGS.

Proof for Theorem 8.

Proof. We construct another reduction from EC3 inspired by proofs by Brandt,
Bullinger, and Tappe (2022). Given a EC3 instance (R,S), ∀s ∈ S, r1, r2, r3 ∈ s
let As = {as, ar1s , ar2s , ar3s }. ∀r ∈ R, ∀i ∈ [nr−1], we create bri . ∀r ∈ R, we create
cr1, c

r
2, c

r
3. We create d, e1, e2, f , g1, and g2. ∀s ∈ S, we create h1s, h2s.

Next we define relationships.

– ∀s ∈ S:
• Fh1

s
= {h2s}

• Sh1
s
= {as ∪

⋃
∀s′ 6=s{ars : r ∈ s′} ∪ {f}

• Sh2
s
= {d}

– Fg1 = {g2}
– Sg1 =

⋃
s∈S,r∈s{ars} ∪ {f}

– Sf = {e1, g1} ∪
⋃

s∈S{h1s}
– Se2 = Sg2 = {d}
– Fe1 = {e2}
– Se1 =

⋃
s∈S{as} ∪

⋃
r∈R{cr1} ∪ {f}

– Sd =
⋃
∀r∈R,∀i∈nr

{bri } ∪
⋃
∀r∈R{cr2, cr3} ∪ {e2, g2} ∪

⋃
s∈S{h2s}

– ∀r ∈ R:
• Fcr1

= {cr2, cr3}
• Scr1

=
⋃
∀s∈Sr

{ars} ∪
⋃
∀s∈S{as} ∪

⋃
∀i∈nr

{bri } ∪ {e1} ∪ {g1}
• Scr2

= Scr3
= {d} ∪ {e1} ∪ {g1}

– ∀r ∈ R, ∀i ∈ [nr − 1]:
• Sbri

= {d} ∪
⋃
∀r∈R{cr1} ∪ {e1} ∪ {g1} ∪

⋃
s∈S{h1s}

– ∀s ∈ S:
• Fas =

⋃
r∈s{ars}

• Sas =
⋃

r∈R{cr1} ∪ {e1, h1s}
– ∀s ∈ S, ∀r ∈ s:
• Far

s
=

⋃
a6=ar

s∈As{a} ∪
⋃
∀i∈[nr−1]{b

r
i }

• Sar
s
=

⋃
r′∈s{cr

′

1 } ∪ {e1} ∪ {g1} ∪
⋃

s∈S{h1s}

All relationships not otherwise defined are enmity.
Given an exact cover S′ ⊆ S, we construct an N-CIS partition γ. ∀s ∈ S′ let

As be a coalition in γ. Since S′ is an exact cover, this leaves nr−1 sets s ∈ Sr \S′
for each r ∈ R. Next, ∀i ∈ [nr − 1] let si denote and arbitrary s ∈ Sr \ S′ and
let {arsi , b

r
i } be a coalition in γ. For each s /∈ S′, let {as} be a coalition in γ.

∀r ∈ R, let {cr1, cr2, cr3} be a coalition in γ. ∀s ∈ S, let {h1s, h2s} be a coalition in
γ. Let {e1, e2}, {g1, g2}, {d}, and {f} all be coalitions in γ.

Now let’s evaluate γ to see whether it’s N-CIS. ∀s ∈ S, h1s has possible
motivation to join, ∀s∗ ∈ S′ : s∗ 6= s, As∗ , but lacks possible permission to join
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since as∗ views h1s as a known enemy. ∀s ∈ S, h2s has necessary motivation to
leave and possible motivation and permission to join d, but they lack possible
permission to leave, because they’re seen as a friend by h1s. g2 has necessary
motivation to leave and possible motivation and permission to join d, but they
lack possible permission to leave, because they’re seen as a friend by g1. g1 has
possible motivation to join, ∀s ∈ S′, As, but lacks possible permission to join
due to the presence of known mutual enemies. f has possible motivation to join
{e1, e2}, {g1, g2}, and, ∀s ∈ S ,{h1s, h2s}, but lacks possible permission to join
any of these coalitions since each contains a known mutual enemy of f . e2 has
necessary motivation to leave and possible motivation and permission to join d,
but they lack possible permission to leave, because they’re seen as a friend by e1.
e1 lacks possible motivation to join any other coalition, because no other coalition
contains more than one friend or stranger of e1. d has possible motivation to
join {g1, g2} or {e1, e2}, but lacks possible permission, because they’re mutual
enemies with g1 and e1 respectively. ∀r ∈ R, d has possible motivation to join
the coalition {cr1, cr2, cr3} since d is mutual strangers with cr2 and cr3, but lacks
possible permission to join since they’re mutual known enemies with cr1. ∀r ∈ R,
i ∈ [nr − 1], d has possible motivation to join the a − b coalition containing
bri since they’re mutual strangers with bri , but lacks possible permission to join
since they’re mutual known enemies with all agents a ∈ A. ∀r ∈ R, cr2 and
cr3 have necessary motivation to leave {cr1, cr2, cr3} to either be a singleton or
possibly to join d, {e1, e2}, or {g1, g2}, but lack possible permission to leave
since cr1 views them as a known friend. ∀r ∈ R, i ∈ [nr − 1], cr1 lacks possible
motivation to join any other coalition in γ since they have two known friends
in {cr1, cr2, cr3} and at most two strangers in any other coalition in γ. ∀r ∈ R,
i ∈ [nr − 1], s : {ars, bri } ∈ γ, bri has necessary motivation to leave {ars, bri } and
become a singleton or possibly join d, {cr1, cr2, cr3}, {e1, e2}, {g1, g2}, or, ∀s ∈ S,
{h1s, h2s}, but lacks possible permission to leave since ars views bri as a known
friend. ∀s /∈ S′, r ∈ s, ars lacks possible motivation to join any other coalition
since they’re in a coalition with one known friend and no enemies, while all
other coalitions they could possibly join contain at most one stranger or known
friend and, except for {as}, contain at least one known enemy. ∀s /∈ S′, as has
possible motivation to join {h1s, h2s} and, ∀r ∈ s has necessary motivation to join
{ars, bri } where i ∈ [nr − 1] and possible motivation to join {cr1, cr2, cr3}, but lacks
possible permission to join any of these coalitions since each of them contains
at least one agent that views as as a known enemy. ∀s ∈ S′, all agents a ∈ As

lack possible motivation and permission to move to any other coalition, since
they have three known mutual friends in As and all other coalitions have at
most one known friend or stranger. We conclude that, for all agents i ∈ N , i
lacks possible motivation to deviate, permission to leave their assigned coalition,
permission to enter a desirable destination coalition, or some combination of all
three conditions. Thus, γ is N-CIS for (N,F,E, S).

Next we prove that if an N-CIS partition exists, then an exact cover exists.
Since f and d have no known friends, both agents have possible motivation and
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permission to leave any non-singleton coalition they’re a part of. Thus {f} ∈ γ
and {d} ∈ γ must hold if γ is N-CIS.
∀s ∈ S, h2s has no known friends, so they have possible motivation to leave

any non-singleton coalition, but if they’re left as a singleton, they have possible
motivation and permission to join d. Since the only agent who views h2s as a
known friend is h1s, h2s and h1s must be in the same coalition so h2s lacks possible
permission to leave. Since all agents a ∈ N \ {h1s, h2s} are viewed as a known
enemy by h1s, h2s, or both, no agent has possible permission to join any coalition
containing h1s and h2s. Since h2s is the only known friend of h1s, if any agent
besides f is in the same coalition as h1s and h2s, then h1s has possible motivation
and permission to leave and join f . Since f must be a singleton, {h1s, h2s, f} ∈ γ
cannot hold if γ is N-CIS. Since h1s and h2s must be in the same coalition and no
other agent can be in the same coalition if γ is N-CIS, {h1s, h2s} ∈ γ must hold if
γ is N-CIS. Analogous logic suffices to prove that {e1, e2} ∈ γ and {g1, g2} ∈ γ
must hold if γ is N-CIS.
∀r ∈ R, i ∈ [nr−1], bri has no known friends, so they have possible motivation

to leave any non-singleton coalition, but if they’re a singleton, they have possible
motivation and permission to join d. Since the set of agents {ars : s ∈ Sr} are
the only agents who view bri as a known friend, bri must be in a coalition with
at least one ars, so bri lacks possible permission to leave. We later show that bri
must be in a coalition with exactly one ars agent and no others, but first must
establish other necessary structural conditions.
∀r ∈, the agents cr2 and cr3 have no known friends, so both have possible

motivation to leave any non-singleton coalition, but if either one or both of
them are singletons, they have possible motivation and permission to join d, so
{cr2} ∈ γ and {cr3} ∈ γ cannot hold if γ is N-CIS. Since cr1 is the only agent
who views cr2 and cr3 as known friends, cr2 and cr3 must be in a coalition with
cr1 if γ is N-CIS. Further, since the only known friends of cr1 are cr2 and cr3, cr1
has possible motivation and permission to leave any non-singleton coalition that
doesn’t contain cr2 or cr3.

Let ar1s and ar2s′ be two agents selected arbitrarily from the set
⋃

s∈S,r∈s{ars}
such that ar1s 6= ar2s′ holds. Let C be a coalition such that ar1s ∈ C and ar2s′ ∈ C.
Given that {d}, {e1, e2}, {f}, {g1, g2}, and ∀s ∈ S {h1s, h2s}, must be coalitions
in γ if γ is N-CIS, let each of these coalitions be members of γ. Since g1 is
in a coalition with only one known friend, they have possible motivation to
join C since they’re mutual strangers with ar1s and ar2s′ . Since g1 has necessary
permission to leave {g1, g2}, γ cannot be N-CIS if g1 has possible permission to
join C. If γ is N-CIS, the set agents who view g1 as a known enemy and can also
be a member of C is

⋃
s∈S{as}. Thus, if γ is N-CIS, then C must contain some

agent a∗s ∈
⋃

s∈S{as} so g1 lacks possible permission to join C.
For some s ∈ S, r ∈ R, let C be a coalition containing as and cr1. Given

that {d}, {e1, e2}, {f}, {g1, g2}, and ∀s ∈ S {h1s, h2s}, must be coalitions in γ if
γ is N-CIS, let each of these coalitions be members of γ. Since e1 only has one
known friend in their coalition, they have possible motivation to join C since
they’re mutual strangers with as and cr1. Since e1 has necessary permission to
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leave {e1, e2}, γ cannot be N-CIS if e1 has possible permission to join C. Since
the set of agents who view e1 as a known enemy is {d, e2, g1, g2}∪

⋃
s∈S{as}, no

agent that views e1 as a known enemy can be a member of C if γ is N-CIS since
each agent is required to be in another coalition. Thus, if C contains as and cr1
and γ is N-CIS, then C ∈ γ cannot hold. By the same logic, ∀s 6= s′ ∈ S, as and
as′ cannot be in the same coalition if γ is N-CIS.

For some s ∈ S, r ∈ s, i ∈ [nr − 1], let C be a coalition containing as and
bri . We show that C ∈ γ cannot hold if γ is N-CIS. Suppose there did exist some
N-CIS partition γ such that C ∈ γ. Given that {d}, {e1, e2}, {f}, {g1, g2}, and
∀s ∈ S {h1s, h2s}, must be coalitions in γ if γ is N-CIS, let each of these coalitions
be members of γ. Given that ∀r ∈ R, cr1, cr2, and cr3 must be in the same coalition
if γ is N-CIS, let cr1, cr2, and cr3 be in some coalition Cr ∈ γ. If C = {as, bri }, then
as and bri have necessary motivation and permission to leave, so C must also
contain one or more agents that remove the possible motivation, permission, or
both for as and bri to leave. If ar

′

s ∈ C : r′ 6= r, then bri has necessary motivation
and permission to leave and h1s has possible motivation and permission to join.
If ars′ ∈ C : s′ 6= s, then as has necessary motivation and permission to leave
and cr1 has possible motivation and permission to join. If ars ∈ C, then as and bri
lack possible permission to leave, but cr1 has possible motivation and permission
to join. If ar

′

s ∈ C : r′ 6= r and ars′ ∈ C : s′ 6= s, then as and bri lack possible
permission to leave, but cr1 and h1s have possible motivation and permission
to join. Since including agents to deny as and bri possible permission to leave
results in cr1, h1s, or both having possible motivation and permission to join, C
must also include one or more agents capable of denying cr1, h1s, or both possible
permission to join. The set of agents who view cr1 as a known enemy and could
be members of C is

⋃
s′∈S\Sr,r′∈s′{a

r′

s′}, but the inclusion of ar
′

s′ would give h1s
possible motivation and permission to join. The set of agents who view h1s as a
known enemy and could be members of C is

⋃
s′ 6=s∈S{as′} ∪

⋃
r′∈R{cr

′

1 , c
r′

2 , c
r′

3 },
but we have already shown that neither {as, a′s} ⊂ C nor {as, cr

′

1 } ⊂ C can hold.
Thus, C ∈ γ cannot hold if γ is N-CIS.

For some s 6= s′ ∈ S, r ∈ s′, let coalition C contain as and ars′ . We show that
C ∈ γ cannot hold if γ is N-CIS. Suppose there did exist some N-CIS partition
γ such that C ∈ γ. If C = {as, ars′}, then as and ars′ have necessary motivation
and permission to leave and h1s has possible motivation and permission to join
C, so C must contain one or more agents so as and ars′ lack possible motivation,
permission, or both to leave and so h1s lacks possible permission to join. We
already know that as′ ∈ C cannot hold if C ∈ γ and γ is N-CIS. We also know
∀i ∈ [nr − 1] bri ∈ C cannot hold if C ∈ γ and γ is N-CIS. Thus C must include
some agent ar

′

s : r′ ∈ s and some agent ar
′′

s′ : r′′ 6= r ∈ s so as and ars′ lack
possible permission to leave. The set of agents who view h1s as a known enemy
and could possibly be members of C is

⋃
s′ 6=s∈S{as′} ∪

⋃
r′∈R{cr

′

1 , c
r′

2 , c
r′

3 }, but
we’ve already established that none of these agents can be members of C if C ∈ γ
and γ is N-CIS. Thus, C ∈ γ cannot hold if γ is N-CIS.
∀r ∈ R, s ∈ Sr a

r
s has possible motivation and permission to leave any non-

singleton coalition which does not contain at least one known friend of ars. ∀s ∈ S
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as has possible motivation and permission to leave any non-singleton coalition
which does not contain at least one known friend ars ∈ As. Since, ∀r ∈ R,
∀s ∈ Sr, as and ars are mutual friends, both agents can’t be singletons in any
N-CIS partition γ.

We’ve shown that ∀r ∈ R, ∀i ∈ [nr − 1], bri must be in a coalition with at
least one agent ars : s ∈ Sr. We also know that for any s 6= s′ ∈ Sr no two agents
ars and ars′ can be in the same coalition unless either as or as′ is present. Thus,
each bri must be in a coalition with exactly one agent ars in any N-CIS partition
γ.

We now prove that ∀r ∈ R, there must exist at least one s ∈ Sr such that
as and ars are in the same coalition in any N-CIS partition. We know that as
must either be a singleton or in a coalition with at least one known friend, that
as cannot be in an agent with any agent bri , and that as and ars cannot both be
singletons. We’ve established that ∀r ∈ R, i ∈ [nr − 1], bri must be in a coalition
with exactly one agent ars for some s ∈ Sr. Since |{bri : i ∈ [nr − 1]}| + 1 =
|{ars : s ∈ Sr}|, even if every bri is matched with only one ars, there will be one ars
agent who remains unmatched. This means that ars must either be a singleton
or be in a coalition with another member of AS . If ∀r′ 6= r ∈ s, arsr′ is matched
with some br

′

i , then ars cannot join them, but this also means that as cannot
be in a coalition with ar

′

s . Assuming that as is not initially matched with ars,
both agents have necessary motivation and permission to form a pair. Assuming
that as and ars do start as a pair, neither agent has possible permission to leave.
Thus, in any N-CIS partition γ, ∀r ∈ R, there must exist some s ∈ Sr such that
as and ars are in the same coalition. Further, it follows that ∀r ∈ R, s ∈ Sr, if
ars is not matched with some bri for some i ∈ [nr − 1], then ars and as must be in
the same coalition.

We now prove that ∀r ∈ R, s ∈ Sr, i 6= j ∈ [nr − 1], ars cannot be in a
coalition with both bri and brj . Placing ars in a coalition with bri and brj provides
cr1 with possible motivation to join the coalition since cr1 only has two known
friends. Since none of these three agents view cr1 as a known enemy, the coalition
must also contain some agent who views cr1 as a known enemy to ensure that
cr1 lacks possible permission to join. Given that {d}, {e1, e2}, {f}, {g1, g2}, and
∀s ∈ S {h1s, h2s}, must be coalitions in γ if γ is N-CIS, we can’t assign any of
these agents to the same coalition as ars, bri and brj . Each a ∈ As \ ars views c1r as
a stranger, as do each brk ∀k ∈ [nr − 1], so these agents do not deny cr1 possible
permission to join. Suppose we added cr

′

1 , c
r′

2 , c
r′

3 for some r′ 6= r ∈ R. We’ve
previously established that there must be some coalition s′ ∈ Sr′ such that ar

′

s′

and as′ are in the same coalition. Based on what’s already been proven, we can
deduce that the coalition containing ar

′

s′ and as′ cannot contain any agent from
the set {d, f, e1, e2, g1, g2} ∪

⋃
s ∈ S{h1s, h2s}. We also know that the coalition

containing ar
′

s′ and as′ cannot contain any agent a ∈ As′′ : s′′ 6= s′ ∈ S or
any agent b ∈

⋃
r ∈ R, i ∈ [nr − 1]{bri }. We also know that as′ cannot be in

the same coalition as any cr
′′

1 : r′′ ∈ s′. This means that the only agents who
can be in the same coalition as ar

′

s′ and as′ are other members of As′ . Thus, cr
′

1

has possible motivation and permission to leave {ars, bri , brj , cr
′

1 , c
r′

2 , c
r′

3 } and join
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the coalition containing ar
′

s′ and as′ since it contains two strangers of cr
′

1 and
at most two known enemies. Altogether, there exist no agents who will deny cr1
possible permission to join and can also be added to the coalition {ars, bri , brj}
if the resulting partition must be N-CIS. Suppose instead we start with the
coalition {ars, bri , brj , cr1, cr2, cr3}. In this case, as previously established, there must
exist some s′ ∈ Sr such that ars′ and as′ are in the same coalition. This provides
cr1 possible motivation and permission to join the coalition containing ars′ and
as′ . Thus, ∀r ∈ R, s ∈ Sr, i 6= j ∈ [nr− 1], ars cannot be in a coalition with both
bri and brj .

∀s ∈ S, if as is a singleton, then ∀r ∈ s, ars must be in a coalition with exactly
one agent bri for some i ∈ [nr−1]. Since as is a known mutual friend of ars, as has
necessary motivation to join ars, so ars must be in a coalition with at least one
known friend and at least one agent who will deny as possible permission to join.
Based on the previous findings, we can narrow down the pool of agents that ars
can be grouped with to other members of As or bri . Since the other As members
are also mutual friends with as, it follows that ars must be paired with bri in order
to deny as possible permission to join. Since ars can’t be in the same coalition as
any ar

′

s : r′ 6= r ∈ s unless as (or some other agent as′ : s′ ∈ S), ars can’t be with
bri and additional friends from As. Thus, if as if as is a singleton, then ∀r ∈ s,
ars must be in a coalition with exactly one agent bri for some i ∈ [nr − 1].

We now prove that ∀s ∈ S, r ∈ s, if as and ars are in the same coalition, then
As must be in γ. We’ve shown that if as is alone, then ∀r ∈ s ars must be paired
with exactly one bri where i ∈ [nr − 1]. We’ve also shown that ∀r ∈ R, there
must exist some s ∈ Sr such that as and ars are in the same coalition. We’ve
also shown that ∀s ∈ S, r ∈ s, ars must be in a coalition with a known friend,
meaning either at least one agent from As or bri . We’ve also shown that ∀s ∈ S,
r 6= r′ ∈ s, ars and ar

′

s can only be together if as is also present. It follows then
that if ars is not paired with bri , then they must be in a coalition with as. Now
suppose there exists some partition γ and some s ∈ S such that r1, r2, r3 ∈ s
where {as, ar1s }, {ar2s , b

r2
i }, {ar3s , b

r3
j } ∈ γ. In any such scenario, ar2s and ar3s have

necessary motivation and permission to leave their current coalition and join
{as, ar1s }. This results in γ′ where either {as, ar1s , ar2s }, {b

r2
i }, {ar3s , b

r3
j } ∈ γ′ or

{as, ar1s , ar3s }, {ar2s , b
r2
i }, {b

r3
j } ∈ γ′. This leaves ar3s (resp. ar2s ) with necessary

motivation and permission to join {as, ar1s , ar2s } (resp. {as, ar1s , ar3s }), resulting
in γ′′ where As ∈ γ′′. This, in turn leaves br2i and br3j with possible motivation
and permission to join d meaning that γ, γ′, and γ′′ all are not N-CIS. We
conclude that the only way an N-CIS partition can exist if as and ars are in the
same coalition is if their initial assignment is to As. Thus, ∀s ∈ S, r ∈ s, if as
and ars are in the same coalition, then As must be in γ. Combining the logic
from the last several paragraphs, we conclude that ∀s ∈ S, r ∈ s, the coalition
containing ars must be As or {ars, bri } for some i ∈ [nr − 1] if γ is N-CIS. Since
we’ve just shown that ∀s ∈ S, r ∈ s, if as and ars are in the same coalition, then
As must be in γ, it follows that ∀r ∈ R, there must exist some s ∈ Sr such that
As ∈ γ. Further, |Sr| = nr, so there can be no more than one s ∈ Sr such that
As ∈ γ if γ is N-CIS.
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We now prove that ∀r ∈ R, {cr1, cr2, cr3} must be a coalition in any N-
CIS partition γ. Suppose there exists some C ∈ γ where γ is N-CIS where
{cr1, cr2, cr3} ⊂ C. Since {cr1, cr2, cr3} is a strict subset of C, there must exist a
non-empty set of agents C \ {cr1, cr2, cr3}. We now consider which agents could
possibly belong to C \ {cr1, cr2, cr3} if it’s a given that γ is N-CIS. Given that
{d}, {e1, e2}, {f}, {g1, g2}, and ∀s ∈ S {h1s, h2s}, must be coalitions in γ if γ is N-
CIS, let each of these coalitions be members of γ. Given that ∀r ∈ R, i ∈ [nr−1],
bri must be in a coalition with exactly one agent ars : s ∈ Sr, {ars, bri } ∈ γ must
hold if γ is N-CIS, let each such coalition be members of γ. Given that ∀s ∈ S,
r ∈ s, ars must either be in As or {ars, bri } for some i ∈ [nr − 1] if γ is N-CIS,
let each ars belong to one of two such coalitions in γ. After accounting for all of
these requirements, the only remaining agents who may be able to belong to C
are those belonging to the set

⋃
r′ 6=r∈R{cr

′

1 , c
r′

2 , c
r′

3 }; note that if any such agent
belongs to C, then the other two associated agents must also belong to C. We’ve
established that ∀r ∈ R, there exists some s ∈ Sr such that As ∈ γ holds if γ is
N-CIS. If there exists some C ∈ γ where {cr1, cr2, cr3} ⊂ C and γ is N-CIS, then
there must be at least one r′ such that {cr′1 , cr

′

2 , c
r′

3 } ⊂ C since these agents are
the only agents who are not required to belong to some other coalition in any
N-CIS partition. The best-case C that satisfies these requirements is defined by
r 6= r′ ∈ R such that C = {cr1, cr2, cr3, cr

′

1 , c
r′

2 , c
r′

3 } since it minimizes the number
of enemies cr1 and cr

′

1 have in C, so let this C be a member of γ. If we compare C
to As, we see that C has 2 known friends and 3 known enemies for cr1 while As

has two mutual strangers and two enemies that cr1 views as enemies, but both
view cr1 as a stranger, meaning that cr1 has possible motivation and permission
to leave C and join As instead. Thus we have a contradiction to the claim that
γ is N-CIS. We observe that adding an additional trio cr

′′

1 , cr
′′

2 , cr
′′

3 to C will
only reduce the utility cr1 further, so no such additions will remove the possible
motivation and permission for cr1 to deviate. We also note that ∀r ∈ R such that
nr > 1, for any s ∈ Sr, i ∈ [nr − 1] such that {ars, bri } ∈ γ holds, cr1 has possible
motivation and permission to join {ars, bri } if {cr1, cr2, cr3} ∈ γ doesn’t hold. Thus
we conclude that ∀r ∈ R, {cr1, cr2, cr3} must be a coalition in any N-CIS partition
γ.

Lastly we show that ∀s ∈ S, h1s lacks possible motivation, permission, or
both to join As or, for any s′ 6= s ∈ S, As′ . We’ve established that h1s must be in
a pair with h2s in any N-CIS partition γ. h1s has possible motivation to join any
coalition As′ where s′ 6= s, but lacks possible permission to join since as′ views
h1s as a known enemy. h1s lacks possible motivation to join As since they have one
stranger and three known enemies, even though they have possible permission
to join. Further, no agent who views h1s as a stranger has permission to join
{h1s, h2s} since h2s views all such agents as known enemies.

Below we summarize the requirements for a FOHGS instance to have an N-
CIS partition when it’s derived from (R,S) as described at the beginning of the
proof:

– {d} ∈ γ, {f} ∈ γ, {e1, e2} ∈ γ, {g1, g2} ∈ γ all hold
– ∀r ∈ R:
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• ∀i ∈ [nr − 1]:
∗ ∃s ∈ Sr such that {ars, bri } ∈ γ holds

• {cr1, cr2, cr3} ∈ γ holds
• There exists exactly one s ∈ Sr such that As ∈ γ holds

– ∀s ∈ S:
• {h1s, h2s} ∈ γ
• One of the following holds:

∗ As ∈ γ
∗ {as} ∈ γ and ∀r ∈ s, ∃i ∈ [nr − 1] such that {ars, bri } ∈ γ

Each As group corresponds to some s ∈ S, so we construct a candidate cover
r∗ such that ∀s ∈ S : As ∈ γ let s ∈ r∗ hold. Since, in order for γ to be N-CIS,
∀r ∈ R, there must exist exactly one s ∈ Sr such that As ∈ γ, the set r∗ ⊆ S such
that ∀s ∈ S : As ∈ γ corresponds to an exact cover of (R,S). This indicates that
the FOHGS instance has an N-CIS partition if and only if an exact cover exists
for the EC3 instance it’s based on. Thus, N-CIS existence for asymmetric
FOHGS is NP-complete.

(a) (b) (c)

Fig. 1. FOHGS with no N-CS partition.

Proof for 9.

Proof. Consider a FOHGS based on the graph shown in Figure 1 (a).
First, we rule out several types of partitions that are all possibly or necessarily

blocked, and thus cannot be N-CS.
Any partition which does not place all members of a known friend trio in

the same coalition is possibly blocked by the 3-clique coalition of the friend
trio. To prove this, we first observe that regardless of how stranger relations are
resolved, a coalition composed solely of a 3-clique of known friends provides 12
utility. Now, suppose that all strangers become enemies. In such a scenario, the
only friends an agent has are the members of their 3-clique of known friends.
If all three clique members are singletons, then they can increase their utility
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from 0 to 6 by forming a pair with another clique member and from 0 to 12 by
forming a coalition with all three clique members. If two clique members are in
a pair and the third is a singleton, all three can increase their utility from either
6 to 12 or 0 to 12 by forming a coalition with all three clique members.

Next, suppose that at least one stranger pair becomes friends. First, we ob-
serve that each agent has exactly one stranger, so each agent can gain at most
one friend through strangers becoming friends. Suppose that all three members
of a 3-clique of known friends are in separate coalitions. Since each agent can gain
at most one friend from strangers becoming friends, the best that any of these
agents can do in separate coalitions is to be in a coalition with only their stranger
and that they become friends with their stranger, giving them a utility of 6. Since
the 3-clique trio of known friends provides 12 utility to all three members, any
coalition which places all three members in separate coalitions is blocked by the
3-clique. Suppose instead that two members of a 3-clique are in one coalition
and the third member is in another coalition. If the two clique members are in
a pair coalition, then we’ve already established the 3-clique blocks the partition.
What if the two clique members are in a coalition with their strangers instead?
In a best-case scenario, such a partition gives the two clique members 11 utility,
because they’re in a coalition with two friends and at least one enemy. Since the
trio provides 12 utility, it once again blocks any such partition. Thus we conclude
that all possibly stable partitions must place all members of a 3-clique of known
friends in the same coalition.

This reduces the number of partitions that may be possibly stable to two: the
partition where each trio of known friends is in a 3-clique coalition (Figure 1 (b)),
and the partition where the grand coalition forms (Figure 1 (c)). If all strangers
become enemies, then the partition of two 3-cliques is SCS, and therefore CS,
because all agents are in a coalition with all of their friends and none of their
enemies, meaning that it is P-CS. Since no agent has any friends outside of their
coalition and no enemies inside their coalition, every agent is in the best possible
coalition under this resolution of strangers. The partition of two 3-cliques is not
N-CS, because it is possibly blocked by the grand coalition when all strangers
become friends. Now suppose that all strangers become friends and the grand
coalition forms. Since all agents have three friends, no coalition with fewer than
four agents can possibly block the grand coalition, since all agents in coalitions
with less than 4 agents would lose at least one friend; however, since no two agents
have the same stranger-turned-friend, no coalition of four or even five agents can
break away without at least one agent losing a friend. Thus no coalition with
four or five agents can block the grand coalition. Since there are only six agents
in the partition, we conclude that the grand coalition is CS in the case where
all strangers become friends, so it is P-CS. The grand coalition is not N-CS,
because it is blocked by the partition of two 3-cliques when all strangers become
enemies.

We’ve shown that all P-CS partitions must place all members of the known
friend 3-cliques in the same coalition, reducing the number of partitions we must
examine further to two. We went on to show that both of these partitions: the
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partition of two 3-cliques and the partition where the grand coalition forms are
both P-CS, but neither is N-CS. Thus, we conclude that no N-CS partition exists
for a FOHGS based upon the graph shown in Figure 1, thereby proving that N-
CS partitions are not guaranteed to exist for FOGHS, even when relations are
symmetric, agents have strictly more known friends than strangers, and at most
one stranger.

(a) (b)

(c) (d)

Fig. 2. EOHGS with no N-CS partition.

Proof for Theorem 10.

Proof. Consider a game represented by the graph in Figure 2 (a). Since we are
dealing with EOHGS, any P-CS partition must only contain coalitions that are
possibly cliques, since the presence of a single known enemy will guarantee that
an agent’s utility is negative, meaning that they benefit by leaving to become a
singleton. Because of this, we focus only on partitions whose coalitions are all
possible cliques. Since each friend in a coalition increases an agent’s utility by 1,
each agent’s utility is maximized when they belong to the largest clique they are
a member of. As a result, a P-CS partition will comprise a set of cliques which
are possibly maximal for all their members. Based on this, we can reduce the
partitions we consider to those described in Figures 2 (b), (c), and (d).

The partition described in Figure 2 (b) is P-CS. This is because agents 3—6
form a 4-clique when agents 3 and 5 are friends, which is the largest possible
clique in the graph. The remaining agents 1 and 2 form a pair, since this is the
largest clique they can form when 3 has joined the 4-clique. If 3 and 5 become
enemies then {3} and {5} block {3,4,5,6}, so it is not N-CS.

Figure 2 (c) describes a pair of 3 cliques. If agents 3 and 5 are enemies,
then the maximal clique size for all agents is 3, with the possible 3-cliques being
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{1,2,3}, {3,4,6}, and {4,5,6}. Since the clique sizes are the same, agents 3, 4,
and 6 are indifferent between the two cliques they each belong to. Agents 1,
2, and 5, meanwhile, only belong to a single 3-clique, so they prefer to be in
the one 3-clique they belong to over any other possible coalition. As a result,
the partition {{1,2,3}, {4,5,6}} is CS because no subset of the game’s agents
can form a large clique to block the partition. However, the partition described
in Figure 2 (d) is also CS, because while agents 1, 2, and 5 can be better off
in a 3-clique than as a pair and singleton respectively, the other agents of the
3-clique they belong to do not benefit from the change, so neither {1,2,3} nor
{4,5,6} blocks the partition. Thus, whenever agents 3 and 5 are enemies, both
of these partitions are CS, meaning that they are both P-CS. However, they are
not N-CS, because both of these partitions are blocked by {3,4,5,6} if 3 and 5
become friends instead of enemies. Thus, none of the three P-CS partitions are
N-CS, meaning that no N-CS partition exists for the EOHG instance described
in Figure 2 (a).

If agents 3 and 5 become friends, then the partition shown in Figure 2 (b) is
the only SCS partition, but if they become enemies, then either the partition in
Figure 2 (c) or (d) can be CS, though (c) is SCS, while (d) is not.
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