Translation of the Golden Ratio into the rules of Thinking - Logical Inference. 6 Laws

Translation into English: Laws of Correct Thinking

The laws of correct thinking are principles that allow us to make justified and logically consistent conclusions. Based on R_{L1} - R_{L6} , the following laws are formulated:

1. Law of Belonging (CT1):

If an object ${\cal P}_{\rm B}$ satisfies established conditions, then it belongs to a specific category. Formulation:

 $If \, x_n = F(n) \cdot \cos\left(\frac{\pi}{2} \cdot n\right) \, and \, y_n = F(n) \cdot \sin\left(\frac{\pi}{2} \cdot n\right), \, then \, P_n \in \mathrm{Fibonacci} \, \mathrm{Spira}$

Principle: For an object to belong to a category, it is necessary and sufficient to meet the criteria for belonging.

2. Law of Sequence (CT2):

Every element of a system is derived from previous elements based on clear rules. Formulation:

If F(n-1) and F(n-2) are known, then F(n) = F(n-1) + F(n-2).

Principle: In any sequence, the elements are causally related.

3. Law of Angular Increment (CT3):

A change in one parameter determines a predictable change in another. Formulation:

If θ_{n-1} isknown, then $\theta_n = \theta_{n-1} + \frac{\pi}{2}$.

Principle: The sequence of changes in the system's elements follows an established regularity.

4. Law of Deterministic Construction (CT4):

Each element of the system can be fully determined by known parameters. Formulation:

If F(n) and θ_n are known, then $P_n = (F(n) \cdot \cos(\theta_n), F(n) \cdot \sin(\theta_n))$.

Principle: Each object or event has specific, unambiguous characteristics.

5. Law of Uniqueness (CT5):

Different elements of the system cannot be identical if they have unique inputs. Formulation:

If
$$n \neq m$$
, then $P_n \neq P_m$

Principle: Unique input parameters lead to unique results.

6. Law of Continuity in Construction (CT6):

Sequential application of rules leads to a continuous and logically connected result. Formulation:

 $If P_0, P_1, \ldots, P_{n-1} are constructed according to the rules, then P_n extends the spiral.$

Principle: A logical sequence of actions guarantees the continuity and integrity of the process.

Final Statement:

The laws of correct thinking CT1-CT6 ensure the rigor, logical consistency, and determinism of reasoning, applicable both to mathematical objects and any systems governed by strict rules.

Translation of the Golden Ratio into the rules of Thinking - Logical Inference. 6 Laws

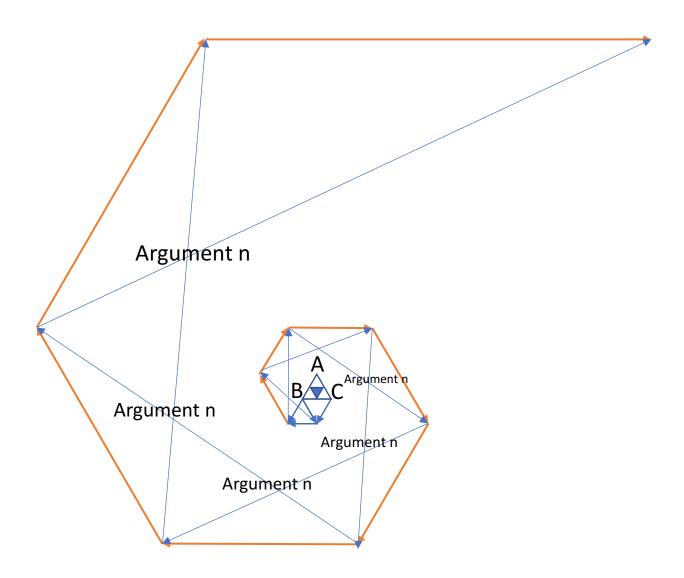
Перевод правил логического вывода в законы правильного мышления Законы правильного мышления – это принципы, позволяющие делать обоснованные и логически непротиворечивые выводы. На основе R_{L1} - R_{L6} формулируются следующие законы: Закон однозначного построения (ЗМ4): Каждый элемент системы может быть полностью определён по известным параметрам. Формулировка: Если F(n) и θ_n известны, то $P_n = (F(n) \cdot \cos(\theta_n), F(n) \cdot \sin(\theta_n)).$ Закон принадлежности (ЗМ1): Если объект P_n удовлетворяет установленным условиям, то он принадлежит Принцип: Каждый объект или событие имеет определённые, однозначные характеристики. определённой категории. Формулировка: Если $x_n = F(n) \cdot \cos\left(\frac{\pi}{2} \cdot n\right)$ и $y_n = F(n) \cdot \sin\left(\frac{\pi}{2} \cdot n\right)$, то $P_n \in$ Спираль Фибоначч Закон уникальности (ЗМ5): Принцип: Для принадлежности объекта необходимо и достаточно выполнения критерия Разные элементы системы не могут быть одинаковыми при уникальных входных данных. принадлежности. Формулировка: Если $n \neq m$, то $P_n \neq P_m$. Принцип: Уникальные входные параметры приводят к уникальным результатам. Закон последовательности (ЗМ2): Каждый элемент системы выводится из предыдущих на основании чётких правил. Формулировка: Если F(n-1) и F(n-2) известны, то F(n) = F(n-1) + F(n-2). Закон непрерывности построения (ЗМ6): Последовательное применение правил приводит к непрерывному и логически связанному Принцип: В любой последовательности элементы связаны причинно-следственными результату. отношениями. Формулировка: Если $P_0, P_1, \ldots, P_{n-1}$ построеныпоправилам, то P_n продолжаетспираль. Принцип: Логическая последовательность действий гарантирует непрерывность и Закон углового прироста (ЗМЗ): целостность процесса Изменение одного параметра определяет закономерное изменение другого. Формулировка: Если θ_{n-1} известно, то $\theta_n = \theta_{n-1} + \frac{\pi}{2}$. Итоговое утверждение: Принцип: Последовательность изменений элементов системы подчиняется установленной Законы правильного мышления 3M1 - 3M6 обеспечивают строгость, догическую закономерности. непротиворечивость и однозначность рассуждений, применимых как к математическим

Reason = (true * Sense) + argument. argument != 0 n = (Truth n=1 + Logic n=1)+(Truth n=2 + Logic n=2)+Ar

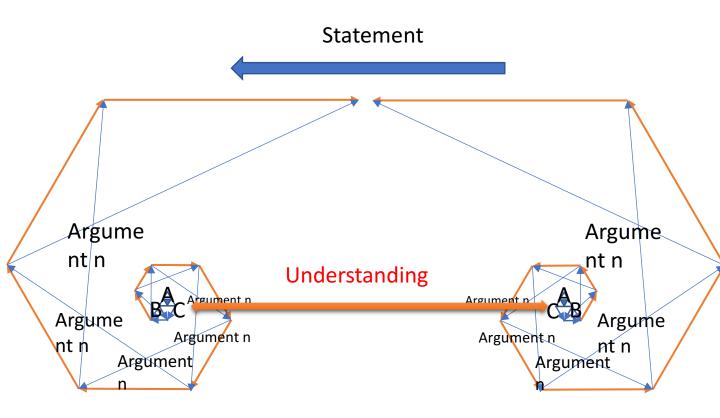
объектам, так и к любым другим системам, подчиняющимся строгим правилам.

Reasoning n =(Truth n-1 \cdot Logic n-1)+(Truth n-2 \cdot Logic n-2)+Argument n Reasoning n = Conclusion n-1+Conclusion n-2+Argument n

> n = step of ReasoningConclusion0=1, Conclusion1=2 Argument=1 for all $n \ge 2n$.


+ Aristotle: A conclusion is drawn from at least two premises.

Ψυχοτρον: The Paradox of Psychiatry that Requires Resolution: Can Something Exist That Cannot Exist?


Троv - делать, Ψυχο - Душа, Ментальность. Троv - Creation, Ψυχο - Soul, Mentality.

XP∴ΩN

The spiral of reasoning construction

The spiral of reasoning construction

constructing a spiral of reasoning

12 Rules for Building an Argumentation Spiral:

Identifying the Starting Point
 Begin with a clear definition of the central idea or hypothesis (point A). This is the basis for the entire structure of the argument.

Multiple Arguments
 At each stage of the argument (B, C, and so on) there should be several independent reasons to support the central idea.

Coherence and Structure
 Each new argument is logically connected to the previous ones, expanding and deepening the argument.

Centered Connection
 All arguments should be connected to the main thesis, while maintaining an overall focus on the central hypothesis.

5. **Hierarchical Arguments** Arguments are organized by levels of importance or significance, creating a pyramidal structure.

6. **Reasonableness at Each Stage**Each argument should be supported by evidence or references to avoid logical gaps.

7. **Moving to New Levels** The spiral structure implies that at each turn a new dimension or complication of the topic is introduced.

8. **Repetition with Development** Arguments from previous levels can be reused, but with the addition of new data for strength.

9. **Backchecking Logic** Return to previous levels regularly to check their consistency with new data.

10. **Visualizing Connections** Use graphical representations (as in the figure) to clearly show the relationship between arguments.

11. **Flexibility and Adjustment** If new arguments contradict old ones, the structure must be revised to maintain the integrity of the reasoning.

12. **Completing the Spiral**

The final statement or conclusion should unite all arguments into a single, logically complete construction.

To represent the described rules for constructing a spiral of argumentation in the form of logical formulas, one can use the basic symbols of logic: (A, B, C, dots) - assertions (hypotheses or arguments), ((Rightarrow)) - implication, ((land)) - logical "and", ((lor)) - logical "or", ((neg)) - negation.

12 rules in logical formulas:

```
1. **Starting point identification**
The central hypothesis \( A \) exists:
١/
A \neq \emptyset
\backslash 1
2. **Argument multiplicity**
For any statement (A ) there is a set of arguments ( \{B_1, B_2, dots, B_n \} ):
]/
A \Rightarrow (B_1 \land B_2 \land \dots \land B_n)
\]
3. **Sequence and structure**
If (B_i ) supports (A ), then each subsequent hypothesis (C_j ) is based on the previous ones:
١/
(B_i \Rightarrow A) \land (C_j \Rightarrow B_i)
\1
4. **Centered relationship**
Each argument (X ) necessarily supports the central statement (A ):
١/
X \Rightarrow A
\]
5. **Hierarchy of arguments**
If \( B_1, B_2, \dots, B_n \) are arguments, then there is an order of their significance:
١/
B_1 \succ B_2 \succ \dots \succ B_n
1
6. **Validity at each stage**
For any argument (B_i ) there is at least one proof (P ):
١
B_i \Rightarrow \exists P_i \quad \text{(P is a proof)}
\backslash 1
```

7. **Transition to new levels** If level (B) is completed, then a new set of statements (C) appears: ١ \forall B_i \, \exists C_j \quad (C_j \Rightarrow B_i) 18. **Repetition with development** If an argument \(B \) is used at a new level \(C \), it must be supplemented with a new aspect \(\Delta \): ١/ (B \land \Delta) \Rightarrow C \1 9. **Backward check of logic** Each new argument \(C_j \) must be consistent with the previous ones: 1 (C_j \land \neg B_i) \Rightarrow \text{Contradiction} /] 10. **Visualization of connections** There is a set of logical connections (L), where each argument (X) is connected to (A): ١/ $L = \{(X_1 \in A), (X_2 \in A), (dots)\}$ $\backslash 1$ 11. **Flexibility and adjustment** If a contradiction \(\neg A \) appears, the structure must be revised: ١/ (\neg A \lor \neg B_i) \Rightarrow \text{Reconstruction} 112. **Completion of the spiral** The final conclusion \(Z \) unites all previous levels: ١/ Z \Leftrightarrow (A \land B_1 \land B_2 \land \dots \land C_n) $\backslash 1$ These formulas express the logic of constructing arguments in the form of strict mathematical relationships. Uncertainty Reduction: Transitions should reduce the amount of uncertainty or contention. Use of intermediate steps: The spiral demonstrates the importance of sequential reasoning.

Changes in direction: The direction of reasoning has different directions (from center to periphery and from periphery to center) should have clear rules.

1. **Uncertainty Reduction**:

]\

 $\backslash 1$

\forall x \in \text{Arguments}, \; \exists y \in \text{Conclusions} : x \rightarrow y \; \text{and} \; \text{Uncertainty}(y) < \text{Uncertainty}(x)

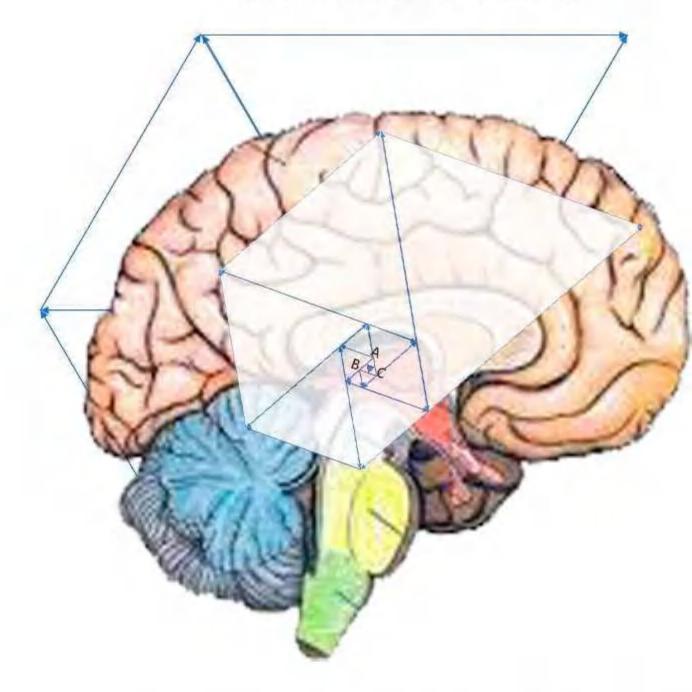
(Each transition from argument (x) to conclusion (y) reduces uncertainty.)

2. **Use of intermediate steps**:

\[\fora \]

\forall (x, y) \in \text{Arguments}, \; \exists z : x \rightarrow z \rightarrow y

(There must be an intermediate step (z) between any two arguments (x) and (y).)


3. **Change of direction**:

\[\fo \1

\forall x, y \in \text{Path}, \; \text{Direction}(x \rightarrow y) \in \{\text{center} \rightarrow \text{periphery}, \text{periphery} \rightarrow \text{center}\}

(Each direction must be strictly defined as moving from the center to the periphery or vice versa.)

The spiral of reasoning construction

A natural form of thinking