
1

Altium DesignerAltium DesignerAltium DesignerAltium Designer 22225555 TutorialTutorialTutorialTutorial
Copyright (C) Istvan Nagy, 2025 www.buenos.extra.hu Free to share!

1. Introduction
This tutorial is targeting complex high-speed digital circuit board designs with Altium Designer release 2024. There are different

grades of high-speed designs from the microcontroller boards up to the server computer motherboard and data center line card designs,

so the methodology here to be suitable for all, is based on the high-end and scalable down.

Altium Designer 25 TutorialAltium Designer 25 TutorialAltium Designer 25 TutorialAltium Designer 25 Tutorial _____________________ 1

1. Introduction _______________________________ 1

2. Basic PCB Design ___________________________ 1

2.1. Projects and Editor _________________ 1

2.2. SCH Library ________________________ 1

2.3. PCB Library ________________________ 2

2.4. Schematics ________________________ 2

2.5. PCB Design ________________________ 3

2.6. Design Reuse ______________________ 4

3. High-Speed Signal Objects ____________________ 4

4. Design Rules _______________________________ 5

5. Constraint Manager ________________________ 6

6. Interactive High-Sp Route ____________________ 8

7. Signal Integrity_____________________________ 9

8. Typical Examples __________________________ 10

8.1. PCIe Gen4 SERDES bus design ________ 10

8.2. DDR4 Memory-Down design ________ 10

--

2. Basic PCB Design

2.1. Projects and Editor
In a project folder we have multiple files. One is the main

project file .PRJPCB, then we have a layout file .PCBDOC, several

schematic pages in separate .SCHDOC files, library files like

.SCHLIB and .PCBLIB, a folder for manufacturing

„ProjectOutputs”. All files open in the main window design

explorer, but the menus are dependent on which file type was open.

A top tab can be used to select which of the open files to edit. All

drawings allow CTRL+scroll for zooming.

New project: file>new>project, give name, enable CM

(whether we want to use constraint manager) then “create”. Create

new files for the project on the projects panel, by right clicking the

PRJPCB and then >add new to project > schematic, or PCB or

library file...

Altium also has several side panels for browsing and editing

objects. They appear depending on file type, and whether we

enabled them from the „Panels” button in the lower right corner.

We can dock them to the left or right side of the screen, they can

be set to stacked, static, auto hide. When they hide a tab label is

shown. The projects panel shows the tree structure of our project,

we can open files from there. Keep these panels always visible:

Projects, PCB, Properties, List.

When right clicking in the editor on empty space, a big menu
opens with lots of settings and actions, dependent on what file we

are editing, what mode we are in.

Most companies have managed and released shared libraries,

but one-person companies can keep library files edited within

projects. We have to add existing company libraries to be

accessible by the project. Either Project>Add Existing, or on the

Components Panel> > Libraries Preferences> Installed>
Install> select file type and browse.

2.2. SCH Library
To make our own schematic symbols, we have to create/open a

SCHLIB file on the projects panel by right clicking the PRJPCB

and then >add new to project >Schematic Lib. The schlib panel

opens, click Add, then enter name, select the new component it in

the schlib panel. In heterogenous split components the top level is

called component, the sub symbol is called a “part”. They appear

under the component name on the schlib panel. To add pins to the

single part component or to the first part of a heterogenous

2

component: select component on schlib panel, then Tools >
Symbol Wizard, set number of pins, then fill out the table or

import from Excel. We can prepare pin tables in Excel in a

matching format like below, then select data (not header), then

CTRL+C to copy, then in Altium upper/left cell CTRL+V to paste.

For single-part-comp or first part we press Place> Symbol, for

heterogenous sub-component-parts press Place> New Part. We

can manually add more parts to a component by the button.

On the properties panel we have to enter parameters like part

number and value. We have to add company-specific properties,

for example if we work at ACME-inc., then ACME_PN,

ACME_DNP, MFR_PN… We also need to add a footprint using

add> footprint> browse.

The signal length (Package Length PL or PinDelay A to B on

diagram) within large BGA packages have to be entered for

accurate length tuning later. When we are editing the schematic
symbol, we have to do this separately for each sub-symbol (part).

Prepare the PL data in excel (same unit as the tool, mils) for each

subsymbol, sorted by pin number, select the length data only,

CTRL+C to copy. In Altium select all pins in the subsymbol the

drawing, but make sure the rectangle is not selected. Then open the

SCHLIBlist panel, in the PinDesignator column sort, then in the

Pin/PckLength column click the first item, CTRL+V to paste.

Save.

2.3. PCB Library
To make our own footprint symbols, we have to create/open

a PCBLIB file on the Projects Panel> PRJPCB> rightclick
>add new to project >PCB lib. The pcblib panel opens. To

add a new footprint: Tools> IPC Compliant Footprint Wizard

(or just the basic Footprint Wizard), fill in the parameters. Once

done, we can edit it, by moving/deleting pins, Place>Pad,

editing pads (click, then Properties panel edit, padstack, X/Y-
size), drawing on silkscreen.

For large BGAs with irregular pattern, we should import

from Allegro or Excel. In allegro open the reference design,

export libraries, then open the footprint, reports> symbol pin

report, then copy (pin number and X/Y coordinates) it into

excel. We can also create this spreadsheet manually based on

the datasheet in Excel. Organize the excel file to have the same

columns as the Altium PCBLIBlist panel table has. In Altium,

footprint library, create a package with the same number of pins

using the wizard. Copy cells from Excel to Altium’s

PCBLIBlist XY coordinates columns. Make sure they were

sorted the same way on both ends of the copy.

2.4. Schematics
Every page is a separate SCHDOC file. Once we added

enough SCHDOC files, in each we click Properties Panel>
Sheet Size drop down to set a larger page size.

Multi-page schematics can be hierarchical with PORT

(Place>Port) connections in the module and SHEET

SYMBOL in the top level schematic. The sub-module symbol is

created by: design>create sheet symbol from sheet. We can

also design flat schematics with no top-level, then we have to use

Place> Off Sheet.
We can place components from the „Components” panel, but

first the SCHLIB file is selected on the top drop-down, then the

component, doubleclick and move to desired location on

schematic. Part rotation with SPACE key while moving it.

Doubleclick on a part and we can see/edit properties, but don’t edit

here, rather in the released library. For example, have a separate

library item for a 1k resistor than a 10k resistor.

A component can be do not populate DNP, to leave it out of

the purchase BOM and pick&place file. Either to design for

debugging (to swap a PU/PD on the prototype without trace

cutting), add possible future features or product variants. We can

do it in different ways depending on company; we could use a DNP
property in all components and NO means in place and Yes means

DNP, or overwrite the part number with “DNP”, then delete these

rows from the BOM manually, or we can use variants. We could

have a base design (add text next near all planned DNPs as “DNP”

in red), and a production variant associated with the board part

number. In this variant we mark the DNPs. First we annotate

refdes, then we create variants in Project>Variants>Add Variant,
Close. Then in the projects panel select the variant to edit by double

clicking. In the schematic on a component (sub-part-A if split part)

rightclick> Part Actions> Variants> In the column named after

our variant click the […] button, select “NotFitted”. All other edits

should be done on the default “NoVariations” variant double-

clicked in the Projects panel.

Once components are placed, we wire them with . We can

place power symbols with . For non-GND nets we have to

place this first, then select it, then on the Properties panel select

Style=Circle, add a net name like P1V0_FPGAC, then we need to
rotate it upside-down by moving and pressing TAB twice. We add

net labels with Place> Net Label. We can draw buses with

“signal harnesses”. We can place parameter set directives with

, then Add>NetClass or Rule… In older versions of Altium we

had to place diffpair symbols in the schematic (Place>
Directives> Diffpair), but in AD24 we should define diffpairs in

the PCB CM or PCB-panel. Either way diffpair nets must be

named with _P and _N suffixes. Nets and ports are local, Off-

sheet-connectors and power symbols are global on all pages. If we

use off-sheet or port then we don’t need net labels.

Once done, we annotate refdes (designator in Altium) to all

components with Tools > Annotation> Force Annotate All.
Then export a BOM with Reports> Bill Of Materials, and if we

used variants or variant-based DNPs then we select the correct

variant from the drop-down. Error checking with project>compile
document. We also export a PDF schematic with File>
SmartPDF.

3

2.5. PCB Design
Start: Project> Add New> PCB, save. The old versions had

a board wizard, that is now gone. Then we need to get a DXF file
from our mechanical engineer, that contains the board outline,

external connector outlines and mounting holes, and import it into

a mechanical layer. File> Import> DXF, then set up scale and layer

(mechanical-1). Set up View> Grids> Set Up Global Snap Grid

to be coarse/accurate, View> Board Planning Mode. Then

Design>Redefine Board Shape, then redraw it, then View> 2D
Layout Mode, then set the grids again to 10mils for placement. Set

the origin Edit>Origin>Set on the board near the lower left corner.

Once the board is set up: we have to import netlist from

schematic: design> import changes from [...prjpcb] validate,
execute, close. This will place all parts next to the board.

Stackup Layers: Design> Layer Stack Manager. Add

layers, define their thicknesses, signal/plane type order. Also

define via types like BB, microvia depths. Layers are not

categorized as class/subclass like in Allegro. We use the

mechanical layers for all manufacturing comments and fab notes.

To enable backdrilling, click the button, select backdrills, a

lower tab appears, click it, then add as many BD layer pairs as we

want to use with the [+Add] button, then editing the layers on the

Properties panel. BD always starts from (Top or) Bottom, and ends
one layer away from our routing MNC layer. On the via types tab,

we define normal via sizes, and layer pairs for microvias or BB.

Panels: Enable/disable panels from the lower/right Panels

button. During PCB design we use many panels, the most

important one is the PCB panel, with a drop-down list on the top to

select signal object type. In the PCB panel we can specify from a

drop-down list what should happen when we select an object: either

no effect („Normal”), or highlight („Dim”), or highlight and

disable editing of other objects („Mask”). It is cancelled by

pressing the „Clear” button in the bottom-right corner. The View

Configuration panel is needed to show/hide layers. The Properties
panel changes content depending on what we are doing.

Connection Lines: View> Connections> Show/Hide…

Layer colors and visibility can be changed: First enable the

Panels>View Configuration panel at the lower/left panels button.

Then we can change colors and temporarily enable/disable specific

layer visibility as needed, by single clicking on the eye icon .
In Altium everything that is on a layer (pads, vias, traces) are

visible or invisible in the same time. The active layer being edited

is selected on the bottom/lower labs under the PCB:

Object Coloring: Nets can be displayed either in layer color,

or net color. On the PCB panel find and select the nets, then

rightclick>Change Net Color. Enable Color Override for each net

using the checkbox next to its name. Set solid coloring in Tools>
Preferences> PCB editor> Board Insight Color Overrides.

The new Altium supports object filtering, like Allegro. Before

moving or deleting objects, we can disable others on the

Properties panel> Selection Filter, to avoid affecting them.

Measure distance: Reports> Measure Distance

Find items and zoom to them: Press “J”, then select component

or net, then type in the refdes or net name. To display info about an

object: left click, the Properties panel will display relevant data.

Component placement is, really just moving from the auto

placed (when imported changes from SCH) area to the board

design. Before placement we make inner layers hidden, so we can

select components instead of planes. Click on one comp, hold and
move. If it doesn’t work then select the small area enveloping the

component then click/move. Rotate with SPACE, or move to

bottom side with “L”. Move refdes as if it was a component. We

can also select a few comps on the sch, if cross select mode is

enabled in tools, then in the layout move them. If the refdeses are

too large, then we can select one, rightlcik> Find Similar
Objects> Refdes = same, OK, then on the Properties panel we

change the text height. How close we can pack them is set in a

constraint: CM> AllR> Placem> CompClearance.

We can place footprints for floorplanning from the

components panel. We can also place mounting holes and

fiducials from it, although using schematic is preferred. MNT holes

can also be placed as pads (Place> Pad then assign GND net).

Design rules: When the PRJPCB is created we have to decide

whether we will be using the legacy design rules editor (DRE), or

the constraints manager (CM). DRE opens from Design>Rules.

CM opens from Design > Constraint Manager, and stored in

constraints.xml file. We should set up at least some basic rules like

clearance, width, solder mask, via style, plane connect/clr, diffpair

rules before any fanout or routing. See chapters on CM/DRE.

Interactive routing starts with the icon. Set the grids to

about 1mil for routing (View>Grids). Active layer is selected by

clicking the bottom tabs. Routing mode can be controlled from:

tools> Preferences> PCB> Interactive Routing in advance, or

from the properties panel during editing, for example push/shove.

We can just click on traces to slide/edit them; we don’t have to

select a specific mode first like in allegro.

Add Vias: press “+” click while routing. Ground stitching vias

can to be placed from Place>via, then assign the net name on the

Properties panel. The size is set in CM> Allr> Routing> Routing
Via Style (All, not net class) or DRE> Route> RoutViaSt.
Altium likes to create vias with soldermask opening, but modern

complex boards are made with all VIPPO (state in fab drawing

notes) and complete tenting (no opening) on both sides. Cheap

boards without VIPPO need complete tenting on top (especially

under BGAs) and a small opening on bottom (for outgassing). So,

we can select a via, rightclick> find similar > ok, then on the

Properties Panel > Solder Mask Expansion = manual =
tented. Or set a rule before use: CM> Allr> Mask> SolderMExp

create a new rule, Object Match = “IsVia”, then click checkbox for

tenting. To use microvias, we have to create them in the Layer

Stack Manager, based on the layer-pairs form the vendor stackup.

Fanout: Set the constraints like width, clearance, SM

expansion and routing via style, as shown above. Then set up

4

fanout behavior with CM> Allr> Routing> Fanout Control. Then

select Route> Fanout> Component, click component.

Draw Power Shapes: (polygon pour) on signal layers, for

power delivery or VRM circuit power nets. Doubleclick to add net.

Voids can be drawn with rightclick on the button and select

.

Keepout shapes: place> keepout> fill, then on the Properties

panel select object type to keep out (via, pad, trace…). For

example, via keepout on a routing layer.

We can specify areas where different rules would apply

locally. These areas are called „Rooms” and can be placed from the

Design > Rooms > Place Rectangular Room menu. Then on

the Properties panel they can be named and specify which layer to

be used on. Then they can be referenced in the design rules or CM

(based on room name), so the rule will only apply within the area

covered by the Room. In the CM>Physical at the bottom of the

table AllRooms/name we can enter new width/via constraints. This

is good for example for BGA breakout neck down, or smaller via

pads to implement “CLASS-3 with exception”. It doesn’t work for
plane clearance, so use class-based clearance rules.

Power plane layers: Altium supports negative planes, so they

need to be set in the stackup. On negative plane layers we place

divider lines, enable the visibility of the layer on the ViewConf

panel, then select the layer on the bottom tabs, then (Place >Line),

then doubleclick an area and select net. There is also a thick

outline layer to pull back from edge cuts.

Plane voids: All signal vias passing through planes will have

an antipad. Altium automatically removes all non-functional pads

(NFPs) on plane layers, but leaves them on signal layers. That also

shrinks the antipads on the plane layers to AP= drill+2*CL

clearance rule value, while keeping them larger AP= pad+2*CL on

signal layer power shapes. Most signals are fine with tight APs

around their via barrels, based only on etching clearance, but

SERDES signals need enlarged pads for via-impedance control and

backdrilling. BD requires a large BD-antipad AP= BD +
2*drillclearance. The drill clearance is usually 5…8mil on each

side, depending on our fab. The BD tool size is usually 6…12 mil

larger in diameter than the via drill size, also depending on the fab.

So, we need to create two rules under CM> AllR> Plane> Plane
Cl, one for all signals with 5mil clearance, and one for the net or

DP classes that belong to 8Gig+ SERDES difffpairs to force a large

AP. Clearance= (AP-viadrill)/2. Signal layers also need a route

keepout circle the same size as the BD antipad on planes.

Dual-voids are required

for high-speed diffpairs on

plane layers. Select GND

layer on bottom tabs, then

Place> Arc(center) on the

pins then Place> Fill between. Either a small rectangle and 2 arcs,

or a large rectangle to envelop them. If the clearance rule-driven

void is large enough then we don’t need extra arcs. We copy these

on all planes. We can also copy this to the route keepouts, to help

backdrilling and prevent signals passing between p/n vias.

DRC check: Tools> Design Rule Check. The list of DRC

violations should be worked down to zero by interactive layout

editing, except a few items that are reviewed and accepted/waived.

Thieving cannot be applied in Altium, but we could use

polygon pours with crosshatched pattern or rely on our PCB fab.

Preparing for manufacturing: Every layer should have text

outside of the outline about layer name, layer number, whether it is

upside-down (mirrored), company info and design part numbers.
On one mechanical layer meant for fab drawing, we place tables

with Place> Drill Table and Place> Layer stack table, then we

manually add text about technology statements, materials, surface

finish, coupons, impedance and loss tables. We also create an

assembly drawing on another mechanical layer, for verifying the

build, by using a dimensioned DXF from our ME. Once all done

we fab-out: File> Fabrication Outputs> Gerber Files, and also

NC Drill. We send a 3D model to our ME, to verify system fit:

File> Export> Step3D. We generate additional documents: File>
Assembly> Pick & Place and Assembly drawing, and File>
Smart PDF. Or all this in a more complicated way: Projects
Panel> PRJPCB> rightclick> Add New> Output Job file.

We can export data reports from the PCB panel. Select the

desired object type (xSignals, Components), then select all classes

and all objects with CTRL+A, then rightclick>Report>Export.

2.6. Design Reuse
Design-reuse with a project is done using multi-channel

hierarchical designs, with multiple instances of the same sch sheet

symbol. Each will create a "room" in the PCB, then we manually

place&route one channel, then copy the work over to the other

channels: Design> Rooms> Copy Room Formats. Reusing

designs from other projects can also be done: File> New> Reuse
Block, it will have both a schematic (single page) and a PCB file,

we edit both and save, then on the Project panel "save to server".

In our new project schematics Place> Reuse Block, the Design

Reuse panel opens, we find out block, place button> rightclick>
Place As Sheet Symbol.

3. High-Speed Signal Objects
The connection objects define the signals, or groups of signals.

They can be browsed on the PCB panel. Categories:

Net: created using net labels in schema.

Bus: create using bus symbols in schema, it uses indexed

net names, like ABC1_[7..0]  ABC1_0. For serdes-

links, it is better not to use buses, unless hierarchical.

Diffpair (DP): Create them in the CM Physical tab with

rightclick > diffpair > Create Diffpairs From Nets, or

in the PCB panel’s “Differential Pair Rule Wizard” both

objects and rules get created. Or graphically in the sch.

Net Class (NetC): A group object. In PCB using

Design> Classes window (add new). Used for all same

type (non-DP) signals on a bus, for length rules. Also

used on trace width (impedance) rules for single-ended.

Diffpair Class (DPC): Similar to net class, create in the

PCB Design>Classes editor. We need two rules for our

DP class: a width and a diffpair rule (phase tol, gap,

uncoupled). We need one for lane-to-lane matching.

From-To: Same as the Allegro PinPair, but obsolete.

xSignal (XS): Same as the Allegro PinPair, preferred.
This is to control propagation delay from a pin to another

pin. On a DDR4 fly-by address bus, on every address net

we would have an xSignal from CPU-DRAM0, another

5

from CPU-DRAM1... They should be created with

Design> xSignals> Create xSignals, or with a wizard.

Xsignals also connect nets through res/cap.

xSignal Class (XSC): Similar to a matched group of

PinPairs in Allegro. We create one XSC for all the

xSignals of all DDR4 address nets between CPU-

DRAM1. Then create a length matching constraint/rule
for that XSC. Another XSC and a rule for CPU-DRAM2.

XNET: They can be created in the CM, XNETs are for

two nets passing a series passive part.

Classes are used to group signals before adding them to a rule.

We can have net classes, DP classes, xSignal classes. Classes are

created in the „Object Class Explorer” at Design>Classes, by

selecting a category, rightclick> Add Class, then add items to it.

Diffpairs should be put into DP classes only, not net classes, to

avoid double definition of width when using the CM (not DRE).

Trace length measurement still has bugs in AD25. It might fail

to measure xSignal lengths accurately, which case we have to

delete and reroute it. Either little trace segments overlap with

others, or a segment is not counted at all.

Xsignals and xSignal classes, as well as their associated design

rules could be created through the xSignal wizard: Design>
xSignals> Run Xsignals Wizard. The other way is through

Design> xSignals> Create xSignals (select source, load, nets,

then analyze, OK, redo for the next lane or chip), which better

shows exact parts. The XS names will end with “_PP1…N”, where

N is the Nth chip on the bus. A third way is in the

CM>Electrical>Nets tab, click on any nets, then the Topology

columns, then in the drop-down select “custom”. In the Design>
Classes> xSignal Classes we have to create XSCs so we can

apply rules to them later in the CM. Use the search with “*” to get

for example “MEM0_A*PP1” for address at DRAM1. We create

XS for point to point buses also, so we can match them in XSCs.

4. Design Rules
In Altium Designer in the traditional flow we normally specify

PCB design rules in the Design Rules editor (DRE), in the

Design> Rules... menu item, instead of using a constraint

manager. For a PCB design, we have to set up various general

design rules, PCB fabricator-driven rules, as well as high-speed

design related trace length and impedance-driven width rules. In

every category there is a default rule, and several user created ones

that only apply to specific objects.

When the PRJPCB is created we have to decide whether we

will be using the legacy design rules in the design rules editor

(DRE), or the constraints manager (CM).

The DRE has a tree structure. Each item in the left menu is a
rule category. We can create several new rules for each category,

each rule will be applied to one class (or complex formula), by

rightclick> New Rule. Important categories:

Elecrical> clearance> clearance: mfr spacing.
Routing> width>width: trace width.
Routing> rout.via style: Set diameter, drill size, tenting.
Routing> Differential: diffp gap, phase-tol and

uncoupled.
Mask: solder mask and paste mask expansion param.

Create a rule for vias with scope=”IsVia”, and set tenting
on top and bottom. The default rule for all other pads

should be 2mil expansion and no tenting.
Plane: power plane/shape param, and via conn style.

High speed> Matched net lengths: Matching rules are

for setup/hold timing on source-synchronous and clock-

forwarding buses.

6

High speed> Length: max total trace length rules are for

synchronous or asynchronous bus SU/H timing or for

SERDES link loss budget (dB/inch).
There is always a default rule, and specific rules for defined

objects (nets, classes). The default rules are based on fabricator

minimum sizes (capability), the specific ones on calculations.

The typical DRE flow flow: 1. On PCB panel create objects
like diffpairs, 2. In design>Classes create classes, 3. In Design

Rules create rules that apply to classes.

Every board needs basic rules like via direct plane connect and

plane clearance under DRE>Plane, component-to-comp clearance

under DRE> Placement, default trace width under DRE>
Routing> Width and Via Style (size), and DRE> Electrical>
Clearance for copper trace gaps enforced by DRC and interactive

push routing. Mask> SolderMask typically 2-3mils depending on

fab, and Routing> Fanout Control for via patterns.

We can specify PCB design rules in the schematics level as

well. We add one PCB_Layout directive (which can contain

multiple rules) to a net. Instead of specifying the object to apply in

the rule, the object is specified graphically by attaching the rule
symbol to net or to multiple nets (copies of the same directive). We

can place a rule directive from the Place> Directives>
Parameter Set, then doubleclick on the symbol and doubleclick

on the rule in the list, then click on the „Edit rule Values” button.
Trace width: Normally we put a group of nets based on

characteristic impedance into a Net Class (for single-ended) or DP

class. Then we set up a DRE> Routing> Width rule for every class

separately, and also a default width rule for all other or non-

impedance controlled traces (4mil). There are 3 values: for the

default rule set min=pref<<max, for others min=pref=max. We

should use width rules instead of impedance rules, from our fab

vendor’s impedance/width/space calculations (from the negotiated

approved stackup document).

Spacing in PCB design has two aspects: manufacturability and

controlling crosstalk levels. For the first aspect, we set up a DRE>
Electrical> Clearance rule, which is normally the minimum

spacing that our PCB manufacturer recommends. The Differential

Pair rules also contain a field called „Gap”, but this is a related to

the differential impedance of the diffpair. For crosstalk control we

use a more flexible spacing rule: DRE> High-Speed> Parallel
Segment rule in the Design Rule Editor. This rule ignores short

parallel segments, and only checks spacing if the two traces run too

long in parallel. Basic spacing is enforced by a push/shove force in

interactive routing. Sometimes we want to specify spacing (Parallel

Segmenth rule) between differential pairs within a group, so we

specify the rule’s scope like „InDifferentialPairClass('classname')”
for the first object and „IsDifferentialPair” for the second object.

For diffpairs the DRE> Routing> Differential Pair Routing

rule has to be set up for every Differential-Pair Class, or to a list of

classes. The rule specifies the trace spacing (Gap) between the

positive and negative trace within a diffpair, and it is enforced in

interactive editing when we use the Interactive Differential Pair

routing option. Diffpair impedance is based on width+gap, we set

the gap in the diffpair rule and the width in the width rule. We will

also have to set up two „Matched Net Lengths” rules applied to a

DP class, one to meet the phase tolerance requirements (within

DP=On, others=Off), and another one for lane-to-lane matching

(within DP=Off, others=On). If we have two multi-lane PCIe links,

then each will be in a different DP class.

Matched length: With this rule we can control the trace lengths

relative to each other in a class of signals, diffpairs or xSignals. It

is used on source synchronous buses like DDR4 data bus, for

diffpair phase tolerance matching or for diffpair lane-to-lane

matching. We can find this at DRE> High Speed > Matched
Net Lengths. An important parameter of the rule is the types of

objects which between the rule will be applied. For differential

phase tolerance rules, we enable only the „Check Nets Within

Differential Pair” option, and leave the other two options disabled.
For lane-to-lane matching or for single-ended buses we enable the

opposite. Note that the „Tolerance” value in the rule is the

maximum difference between the longest and shortest track.

Min/Max trace length: With this rule, we can specify a length

range for a class of signals (Net/DP/XS). We can find the DRE>
High Speed > Length rule in the Design Rules Editor. It is useful

for synchronous, asynchronous and loss budget driven buses.

5. Constraint Manager
Starting from 2024 Altium supports a spreadsheet-like

constraints manager window, like Cadence Allegro and Mentor

Expedition has. Open: Design > Constraint Manager. This is not

available in the cheapest license option. This is preferred instead of

using the DRE if we have hundreds of xSignals or diffpairs, on

large server or router board designs. When a project starts we have

to decide whether it will be a legacy design rules-based design or a

CM based design, we cannot have both. Although we can still

migrate an existing design from DRE to CM: Design > Migrate
Project to Constraint Manager Flow. Migration only works if

the system feature is enabled in: Tools> Preferences> System>
General> Advanced> Constraint Manager. Project Migration
Wizard = 1, then restart Altium.

The contents of CM are saved into an XML file, but only when

we close Altium. There is a bug in AD25, so we cannot enter values

to xSignal classes like tolerance or Target, but there is a solution:

Once we set up all xSignals and XSCs, save, close Altium, then

open Altium again, go to CM and enter these values, save, close

Altium (to ensure it doesn’t crash and lose all constraints, and re-

open again). Now the constraints are usable in editing and DRC.

It has 3 tabs: Clearances, Physical (width, diffpairs), Electrical
(lengths). Under electrical, there are 3 sub tabs: Nets, Diffpairs, and

xSignals. In any of these we can also create classes, by selecting

multiple signals, rightclick>classes>… or create new objects like

DP, XS, XSC… The Clearances tab allows us to add new rules, the

Phys/Elec tabs list objects that we can enter numbers for. The last

tab (AllRules) shows a tree of rule types, similar to the old DRE.

We can use Constraint sets: Once we set up parameters for one

object, we can rightclick > Save As Constraint Set, then we can

reapply it to other objects: rightclick> Select Constraint Set.
In the Clearances tab we can define a clearance between

Net/DP classes in a matrix. We have to add existing classes to the

matrix. When we click [+Add] then it creates both a column+row.

7

In the Physical tab we can see most signal objects types in a

tree hierarchy browser view, like Class/DP/nets, and specify trace

width and via style/size to them. The PolygonConnect column

should be set “DirectConnect” for “IsVia”. We can auto create all

diffpairs here: rightclick > diffpair > Create Diffpair From Nets.

The editor will find them all from name suffixes _P/_N.

In the Electrical tab we can view/edit trace length related rules.

We enter values into an existing table, instead of creating rules. The

Electrical tab has three different sub-tabs: Nets, DP and
xSignals. Each shows object types in a hierarchy/tree browser. On

the Nets sub-tab, we can create XNETs, and we can enter numbers

for max total length (for synchronous buses and loss-driven

SERDES links) and max via stub length constraints (for 8G+

SERDES links). On the Diffpairs sub-tab we can define diffpairs,
and we can enter numbers for diffpair width, gap, uncoupled length

and phase tolerance of the diffpairs.

The xSignals sub-tab at CM> Electr> xSignals tab doesn’t

allow object creation, so we have to do that in the Design>
xSignals> Create xSignals menu. When we first create XS/XSC

objects, the CM> Electr> xSignals tab seems to be read-only, so

we have to save, close Altium, reload Altium, and open CM, now
we can enter values. XSC-based rules in Altium were made for

trace length matching rules, so we have to enter tolerance in +/-

5mils or something, and click Target and open a drop-down menu

to select which member of the XSC will serve as a target length for

all other members. If we need max length rules on xSignals, like

on a synchronous multi-master PCI bus, then we have to use the

AllRules tab instead of the Electr> xSignals tab. The CM will

display the length measurements for each object as “Actual Value”,

or the matching rule deviation as “Margin”. The PCB panel also

displays these measurements.

The AllRules tab: This shows a tree of many rule types, similar

to the old DRE, mainly for basic rules. Check the DRE section for

detailed explanations! Here we can create new rules by rightclick>
Add Custom Rule, then enter ObjectMatch ([…]> Open Query
Builder for classes or object types) and numbers. In the

CM>AllRules > Mask> SolderMask category create a rule for

vias with scope=”IsVia”, and set tenting on top and bottom. The

default rule for all other pads should be 2mil expansion and no

tenting. CM>AllRules > Routing> Routing Via Style sets the via

pad and drill diameters. CM> AllRules > Routing> Fanout Contr
sets pattern (auto, out, away, centered). The plane via connection

style (DirectConn), and plane layer clearance have to be set in

CM> AllRules> Plane> Power Plane Connect Style, and

clearance. The plane clearance should be set to achieve a desired

antipad size AP=BD+12mil= drill+2*CL. The CM> AllRules>
HighSpeed> Parallel Segment is good for crosstalk control

spacing that is only checked if it runs long (past limit). If we need

max length rules on xSignals, like on a synchronous multi-master

PCI bus, se set up a rule under CM> AllRules> HighSpeed>
Length. A multi-lane differential SERDES link requires lane-to-

lane matching, with the CM> AllRules > HighSp> Matched
Length. Backdrilling is defined by max stub length and oversize

(each side of hole) in CM> AllRules> HighSpeed> BackDrilling.
BD also requires definitions in the Layer Stack Manager.

Placement spacing: CM> AllRules > Placem> CompClearance.

For diffpairs in the DRE we specify 4 rules, a width, a diffpair

rule, a matching rule for tolerance and a matching rule between

lanes. In the CM we enter values for diffpairs on the CM> Electr>
Diffp sub-tab, and on the CM> AllRules> HighSp> Matched
Length sub-tab also for lane matching (rightclick> add custom

rule, Object= InDifferentialPairClass(‘NAME’), then select

“group- matched”). Altium25 seems to define width and gap rules

in two places, so to avoid using the wrong values in routing, we

should set the same at both: CM> Physical and at CM> Electr>
Diffp. Most values are entered to the rows of the DPCs. If we have

two multi-lane PCIe links, then each will be in a different DPC.

Maximum Length constraint values for SERDES buses come

from insertion loss budget calculations. The dB/inch loss data,

specific to a fabricator and material combination, comes from VNA

measurements on Delta-L test boards, then the max trace length is

calculated as L<budget/dBpi. The total budget comes from the

relevant standards like IEEE802.3xx, or SFF8418. For

synchronous, asynchronous, source-synch and clock forwarding

buses the rule values are either obtained from the chip vendor’s
datasheet or design guide document, or we calculate them using a

pre-layout timing analysis calculator spreadsheet, like this one:
https://www.buenos.extra.hu/iromanyok/PCB_Timing_analysis.xls

Typical high-speed objects and constraints:

Case Objects to

create

Constraint numbers entered

in CM

8

Differential Pair point-
to-point signal

• DP

• DPC

• CM> Physical (DPC)

• CM> Electr> Diffp (DPC)

• CM> AllRules> HighSpeed>
Parallel Segment. (DPC)

• CM> AllRules> HighSpeed>
BackDrilling (DPC, if >8Gbps)

Single-ended Sync/
Async point-to-point
bus with min/max len.

• NetC • CM> Physical (NetC)

• CM> AllRules> HighSpeed>
Length (NetC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC)

Single-en Source-sync
point-to-point bus
with matched lengths

• NetC

• XS

• XSC

• CM> Physical (NetC)

• CM> Electr>xSignals (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC)

Multi-lane Point-to-
point diff SERDES
bus

• DP

• DPC

• CM> Physical (DPC)

• CM> Electr> Diffp (DPC)

• CM> AllRules> HighSp>
Matched Length (DPC)

• CM> AllRules> HighSpeed>
Parallel Segment. (DPC)

• CM> AllRules> HighSpeed>
BackDrilling (DPC, if >8Gbps)

Single-ended Sync/

Async multi-drop bus
with min/max length.

• NetC

• XS

• XSC
(one/chip)

• CM> Physical (NetC)

• CM> AllRules> HighSpeed>
Length (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC)

Single-ended Source-

sync multi drop bus
with matched lengths

• NetC

• XS

• XSC
(one/chip)

• CM> Physical (NetC)

• CM> Electr>xSignals (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC)

Diff multi drop bus

(like DDR4 clock)

• DP

• DPC

• XS

• XSC
(one/chip)

• CM> Physical (DPC)

• CM> Electr> Diffp (DPC)

• CM> Electr>xSignals (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (DPC)

Mixed SE/Diff multi-
drop bus with matched
lengths, (DDR4 ACC)

• NetC
(SE sign)

• DP

• DPC

• XS

• XSC
(one/chip,
SE+diff)

• CM> Physical (NetC for SE)

• CM> Physical (DPC)

• CM> Electr> Diffp (DPC)

• CM> Electr>xSignals (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC+DPC)

Single-ended Source-
sync tree topology

• NetC

• XS

• XSC
(one/chip)

• CM> Physical (NetC)

• CM> Electr>xSignals (XSC)

• CM> AllRules> HighSpeed>
Parallel Segment. (NetC)

6. Interactive High-Sp Route
During interactive routing, the properties panel should be

visible, that allows us to alter routing parameters. TAB pauses

routing. We can manually route traces by right clicking the routing

mode button , select interactive routing, then clicking a pad, then

pulling the trace. For diffpairs we have to rightclick on the

button, then select Interactive Differential Pair Routing option .
First we route all traces with plenty of spacing, then we tune them

later. Before routing starts, we should lock down large components

by clicking on them, then Properties panel location clock the

button. We can select objects in the schematic, then auto

highlighted in the PCB by tools> Cross Select Mode=on. We

might want to hide most connection lines (ratsnests), to see clearly:

View> Connections> Hide All, then select a few nets on the PCB

panel, rightclick> Show.

Length tuning: We can delete then re-route trace segments,

auto-meander traces with the tuning button , or slide them

(select, drag) to increase/decrease the signal length. The live tuning

gauge only pops up during actual tuning or SE-routing, not
diffpair-routing or sliding, so for those we have to rely on the PCB

panel. While starting the tune, after pressing the tuning button, we

can press TAB to open the Properties panel, where we can select

the meander pattern and parameters. Any editing mode can be

exited/ended with the ESC key. Single-ended traces are tuned by

right clicking the tuning button , select Interactive Length

Tuning, while diffpairs (lane to lane match) are tuned using the

Interactive DiffPair Length Tuning option. During tuning, the

Properties panel shows up with settings. Diffpairs need two tuning

actions, a single-ended one for phase tolerance match (with a 5mil
rule), and a differential one for lane-to-lane matching. The first

thing for phase tolerance is to twist at the pads manually, and only

after that we use meander tunes.

While we are manually tuning the traces, we can measure the

trace lengths. The Altium Designer’s on-screen Length Meter/

Gauge pops up during tuning,

which shows the signal lengths

of the currently edited trace in

real time. The PCB panel also

shows all Net/DP/XS/XSC

9

lengths as a table, but we have to select the drop-down menu for

object type first, and we have to complete the last trace edit for it

to update. The CM also shows XS lengths.

For long 8Gig+ SERDES signals, we use wavy routing and

odd-angle routing, to mitigate fiber weave effect. In Altium this is

achieved by pressing TAB while routing, and selecting the 3rd

corner style on the Properties tab. SERDES links at 8Gbps+ should

use the curved corners (5th style) when possible. Switch between

curved for short and angled for long segments. Curved corners also
enable snake fanout under offset-grid hex-BGAs.

For low-cost and aerospace boards teardrops are used, that we

enable: Tools> Teardrops.

Pin swapping might be required on many designs, if a parallel

bus seems un-routable due to connection-line (ratsnest) crossings.

With hard chips like CPUs the datasheet might tell us which pins

can be swapped with which (within groups), while with FPGAs we

can likely swap most signals (maybe except the diffpairs that must

be on diff capable pin pairs), if we also update the FPGA pinout

file. In Altium, once we are done with the escape routes and some

long distance routes from both ends, then we can set up swapping.

 

Steps: Set the swap behavior to move net labels not pins:

Project> Project Options> Options> Adding Rem Net Labels
= on, while Change Sch Pins = off. In the design, select the

component, then on the Properties panel> Swapping Options>
Enable Pin Swapping. Next, on the same component Rightclick
> Component Actions > Configure Pin/Part Swapping then

upper tab PinSwapping or DiffPair swapping, then find/select

multiple nets. Then on the selection list rightclick> Assign PS
Group> New. A number appears in the PinGroup column. OK to

close. Next is Tools> Pin/Part Swapping> Automatic Pin/Net

Optimizer, then follow instructions. It swaps nets automatically.

Finally, we run Design> Update Schematic, then Validate,

Execute, Close. If it fails with an error, then we find the “Remove

Pins From Nets” and “Add Pins to Nets” sections, take a

screenshot, paste into Paint, as our manual swap list, then manually

swap net labels or off-sheet connectors in the schematic, then save

SCH, go back to PCB and Design> Import Changes.

Backdrilling control is achieved by creating a CM> AllRules
> HighSpeed > Maximum Via Stub Length rule, define stub

length and net class, board side, backdrill oversize (each side of the

via barrel). The maximum value means any stub longer than that

will be backdrilled. The constraint is set slightly longer than what

we write in the fab notes. Up to 64Gbps we don’t backdrill from

bottom to L(N-2) routes, that results in a 2-layer deep stub

(6…16mil), so we set the constraint slightly longer than that. We

have to avoid over drilling press-fit connector pins into their MBL
region, by using a room or custom query (‘IsPin’) and a longer stub

value (MBL minus depth). The start/stop layers are defined by

adding a backdrill pair in the Design> Layer Stack Manager,
upper right drop down menu select "backdrills", a new tab

appears. On the backdrills tab add several BD layer pairs (from

bottom or top to one layer away the routing MNC layer). We also

need to take care of large antipads on planes, and route keepouts

on signal layers, around backdrilled vias, as described in the section

about voids. We get a separate NC drill file for each depth.

The Rules&Violations panel lists all the DRC violations. We

can browse by category/rule/violation and click to highlight. We

can also see them on the PCB panel in red, or in the CM.

7. Signal Integrity
To ensure good signal integrity, we utilize

high-speed design techniques, as explained in

the book titled “Complex Digital Hardware
Design”. It also provides guidance about

architecture, debugging, constraints, timing-

based trace length calculations, trace

impedance control, crosstalk control, ground

returns, stackup design, materials, backdrilling, via impedance

optimization, loss budgets and insertion loss control techniques.

Most SI simulations should be done in proper external tools,

for example pre-layout and decoupling in Keysight ADS, or post

layout in Hyperlynx, HFSS or Simbeor.

Power plane DC voltage drop can be simulated with the

Altium's built-in Power Analyzer by Keysight, that requires a

downloadable add-on install with a separate license. Run: Tools>
Visual Power Analyzer. It has an automated setup.

For differential SERDES links operating at 8Gbps/lane or

above we need to ensure that the impedance of the via structures

also comply to the impedance requirement. We do this by
recreating the via structure in HFSS or Simbeor, optimize the

structure dimensions (via-to-via spacing, via diameter, and

manual void shape/size), then adjusting them in simulation, then

replicating the structure in Altium layout to match the dimensions.

 

10

8. Typical Examples
These examples are based on the CM-flow, not the DRE-flow.

8.1. PCIe Gen4 SERDES bus design
The lane-to-lane matching groups, or diffpair class (DPC) setup

depends on the architecture. If we have an AC-cap then it creates

a short segment between

the chip and the cap, and

a long segment between

the cap and the other chip. We should add a net name on both sides

of the cap in the schematic.

If we had a DC coupled Hyper Transport bus, then one DPC

would be enough. If our PCIe link is between two chips on the same

board, then we have AC-caps on both RX and TX signals on our

board. So, we would need 2 DPCs, one class for the long segments

including both TX and RX signals, and the other class is for the

short segments. If we are designing a PCIe link that passes through
a connector (a motherboard, add-in card or backplane system), then

our constraints will only be created for the segments that exist on

one board. This case we likely have an AC cap only on TX or on

RX signals on our board, and now we have 3 types of diffpairs

(short to cap, long from cap, very long no-cap), so we need 3 DPCs.

We also need to calculate an insertion loss budget at the Gen4

16Gbps speed. We have a budget of 25dB@8GHz. If our PCIe link

is on one board, then we have the whole 25dB available, but if it

goes through a connector, then we only have a portion, budgeted
between 2 boards. Let’s assume we have 70% available for the

motherboard, that means 25dB*0.7=17.5dB. We have to obtain a

fabricator and material related dB/inch loss data from our SI team

or fab vendor, let’s say we got 2dB/inch@8GHz. With 17.5dB

budget and 2dB/inch we can have our max trace length

17.5dB/2=8.75”. On our motherboard we have 3 DPCs, the longest

one can have 8.75” max set in CM> AllRules> HighSpeed>
Length, while the other 2 DPCs have to share that 8.75”, so one

would have let’s say 3” max and the other 8.75-3=5.75” max.

The diffpairs need setting up. We create the diffpairs in the

CM> Physical, then the diffpair classes in Design> Classes.

Every separate refdes-to-refdes interface is a separate class. The

impedance-driven width is in CM>Physical (set on diffpair class).

The _P/_N phase tolerance matching is typically 5mils, that we set

in CM> Electrical> Diffpairs on the diffpair class. We also set up

a constraint for crosstalk control on all PCIe signals with CM>
AllRules> HighSpeed> Parallel Segment. For any reference

clocks, we only need diffpair rules, phase tolerance matching and

DP class trace width rules.

Embedded clock interfaces (like PCIe or HDMI) usually have

De-Skew circuits built-in, so they only need loose lane-to-lane

matching, maybe within 2 inches. Clock forwarding interfaces

(e.g., Hyper Transport 1.0 or XGMII) do tight matching between

diffpairs, maybe within 5 mils. We apply this in CM> AllRules>
HighSp> Matched Length, on each DPC separately.

During routing, we route all diffpairs using interactive DP

routing loosely. Then we match the phase tolerance within each

diffpair by twisting first then single ended tuning. After this we

match them lane to lane using interactive DP length tuning. We can

monitor our progress on the PCB panel. Finally, we run the DRC,

and check the rules and violations panel to see what is left.

We also need to set up backdrilling. In the Layer Stack

Manager, we define all BD depths. Then we define the max stub

length on the DPCs at: CM> AllRules> HighSpeed>
BackDrilling. Any BD at the press-fit connector pins must be

limited, as to not cut into the minimum barrel length of the

connector.

8.2. DDR4 Memory-Down design
The „Memory-Down” is the design technique where we design

a complete DIMM memory on to the motherboard, so we don’t

need to use DIMM sockets, all the memory chips will be soldered

down. The design rules come from CPU design guide documents.

We have to create objects for the address bus signals: A net

class for trace width rules, xSignals for each CPU-to-DRAMn

component pair on every address bus signal, one XSC (match 5mil)
for each CPU-to-DRAMn component pair (containing address and

clock XS). Then we enter the width data for the net class in CM,

and match-length data for each XSC. If we had 25 signals and 4

DRAM chips, then we will have 4*25=100 xSignals and 4 XSCs.

The clock needs diffpairs created, and a DP class for trace

width/impedance and diffpair parameters. We have to create

xSignals for the clocks too, while we are creating them for address

bus. These xSignals will go into the XSCs of the address bus.

The data bus: Since we have DQS diffpairs and DQ SE signals

in one matched group, we have to create xSignals for every signal,

and XSCs (match 5mil) for every lane for matching, and use net
classes only for impedance, otherwise we would have two different

width rules on DQS. We will need one net class for DQ width and

one DP class for DQS width. We will need as many XSCs as the

number of data byte lanes (containing DQ and DQS XS).

